An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
active sites; catalytic activity; drugs; humans; liver; primary amines; sulfotransferases
Abstract:
... Human cytosolic sulfotransferases (SULTs) regulate the activities of thousands of small moleculesmetabolites, drugs, and other xenobioticsvia the transfer of the sulfuryl moiety (-SO₃) from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to the hydroxyls and primary amines of acceptors. SULT1A1 is the most abundant SULT in liver and has the broadest substrate spectrum of any SULT. Here we present t ...
... Hsp90 is an ATP-dependent chaperone of widespread interest as a drug target. Here, using an LC-MS/MS chemoproteomics platform based on a lysine-reactive ATP acyl phosphate probe, several Hsp90 inhibitors were profiled in native cell lysates. Inhibitor specificities for all four human paralogs of Hsp90 were simultaneously monitored at their endogenous relative abundances. Equipotent inhibition of p ...
Michael K. Hjortness; Laura Riccardi; Akarawin Hongdusit; Sophia Ruppe; Mengxia Zhao; Edward Y. Kim; Peter H. Zwart; Banumathi Sankaran; Haribabu Arthanari; Marcelo C. Sousa; Marco De Vivo; Jerome M. Fox
abietic acid; active sites; diterpenoids; drugs; human diseases; inhibitory concentration 50; insulin; molecular dynamics; nuclear magnetic resonance spectroscopy; protein-tyrosine-phosphatase; simulation models; therapeutics
Abstract:
... Protein tyrosine phosphatases (PTPs) contribute to a striking variety of human diseases, yet they remain vexingly difficult to inhibit with uncharged, cell-permeable molecules; no inhibitors of PTPs have been approved for clinical use. This study uses a broad set of biophysical analyses to evaluate the use of abietane-type diterpenoids, a biologically active class of phytometabolites with largely ...
... 1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), which catalyzes the first committed step in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis used by Mycobacterium tuberculosis and other infectious microorganisms, is absent in humans and therefore an attractive drug target. Fosmidomycin is a nanomolar inhibitor of DXR, but despite great efforts, few analogues with c ...
... σᴮ, an alternative sigma factor, is usually employed to tackle the general stress response in Staphylococcus aureus and other Gram-positive bacteria. This protein, involved in S. aureus-mediated pathogenesis, is typically blocked by RsbW, an antisigma factor having serine kinase activity. σᴮ, a σ⁷⁰-like sigma factor, harbors three conserved domains designated σᴮ², σᴮ³, and σᴮ⁴. To better understan ...
Rubach Jon K.; Cui Guanglei; Schneck Jessica L.; Taylor Amy N.; Zhao Baoguang; Smallwood Angela; Nevins Neysa; Wisnoski David; Thrall Sara H.; Meek Thomas D.
... We examined the cathepsin C-catalyzed hydrolysis of dipeptide substrates of the form Yaa-Xaa-AMC, using steady-state and pre-steady-state kinetic methods. The substrates group into three kinetic profiles based upon the broad range observed for kcₐₜ/Kₐ and kcₐₜ values, pre-steady-state time courses, and solvent kinetic isotope effects (sKIEs). The dipeptide substrate Gly-Arg-AMC displayed large val ...
binding sites; bound water; drug resistance; drugs; influenza; models; molecular dynamics; mutants; oseltamivir; public health; sialidase
Abstract:
... The emergence of influenza drug resistance is a major public health concern. The molecular basis of resistance to oseltamivir (Tamiflu) is investigated using a computational assay involving multiple 500 ns unrestrained molecular dynamics (MD) simulations of oseltamivir complexed with mutants of H1N1-2009 influenza neuraminidase. The simulations, accelerated using graphics processors (GPUs), and us ...
... Chloroquine (CQ) resistance (CQR) in Plasmodium falciparum malaria is widespread and has limited the use of CQ in many regions of the globe. Malaria caused by the related human parasite P. vivax is as widespread as is P. falciparum malaria and has been treated with CQ as extensively as has P. falciparum, suggesting that P. vivax parasites have been selected with CQ as profoundly as have P. falcipa ...
amyloid; death; drugs; glucose; humans; insulin replacement therapy; islets of Langerhans; mechanism of action; metabolism; noninsulin-dependent diabetes mellitus; polypeptides; rats
Abstract:
... The hormone human islet amyloid polypeptide (hIAPP or amylin) plays a role in glucose metabolism, but forms amyloid in the pancreas in type 2 diabetes (T2D) and is associated with β-cell death and dysfunction in the disease. Inhibitors of islet amyloid have therapeutic potential; however, there are no clinically approved inhibitors, and the mode of action of existing inhibitors is not well underst ...
Herpesviridae infections; active sites; antiviral agents; bioactive properties; drugs; kinetics; models; serine; site-directed mutagenesis; structure-activity relationships; temperature
Abstract:
... d-Amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for d-amino acids, including d-serine and d-alanine, which are believed to be coagonists of the N-methyl-d-aspartate (NMDA) receptor. To identify a new class of DAO inhibitor(s) that can be used to elucidate the molecular details of the active site environment of DAO, manifold biologically active compounds of microbial origi ...
... Ganglioside GM3 is a sialylated membrane-based glycosphingolipid that regulates insulin receptor signaling via direct association with the receptor. The level of expression of GM3 synthase (GM3S) and GM3 is increased in tissues of patients with diabetes and murine models of diabetes, and obesity-induced insulin resistance is attenuated in GM3S-deficient mice. Therefore, GM3S has been considered a ...
... The diacylglycerol lipases (DAGLα and DAGLβ) hydrolyze DAG to generate 2-arachidonoylglycerol (2-AG), the principal endocannabinoid and main precursor of arachidonic acid (AA). The DAGLs make distinct tissue specific contributions toward 2-AG and AA levels, and therefore, selective modulators for these enzymes could play crucial roles toward harnessing their therapeutic potential. Relatively high- ...
amphotericin B; cholesterol; drugs; ergosterol; fungi; hydrogen; mammals; molecular conformation; stable isotopes; toxicity; van der Waals forces
Abstract:
... The interaction of amphotericin B (AmB) with fungal ergosterol (Erg) is stronger than its interaction with mammalian cholesterol (Cho), and this property of AmB as an antifungal drug is thought to be responsible for its selective toxicity toward fungi. However, the mechanism by which AmB recognizes the structural differences between sterols, particularly minor difference in the sterol alicyclic po ...
Crump Christina J.; Castro Suita V.; Wang Feng; Pozdnyakov Nikolay; Ballard T. Eric; Sisodia Sangram S.; Bales Kelly R.; Johnson Douglas S.; Li Yue-Ming
... The “Notch-sparing” γ-secretase inhibitor (GSI) BMS-708,163 (Avagacestat) is currently in phase II clinical trials for Alzheimer’s disease. Unlike previously failed GSIs, BMS-708,163 is considered to be a promising drug candidate because of its reported Notch-sparing activity for the inhibition of Aβ production over Notch cleavage. We now report that BMS-708,163 binds directly to the presenilin-1 ...
... With its high morbidity rate and increasing resistance to treatment, methicillin-resistant Staphylococcus aureus (MRSA) is a grave concern in the medical field. In methicillin-susceptible strains, β-lactam antibiotics disable the penicillin binding proteins (PBPs) that cross-link the bacterial cell wall. However, methicillin-resistant strains have PBP2a and PBP4, which continue enzymatic activity ...
... Biofilms are aggregates of cells that form surface-associated communities. The cells in biofilms are interconnected with an extracellular matrix, a network that is made mostly of polysaccharides, proteins, and sometimes nucleic acids. Some extracellular matrix proteins form fibers, termed functional amyloid or amyloid-like, to differentiate their constructive function from disease-related amyloid ...
drugs; etiology; models; neurodegenerative diseases; protein kinases; proteins; screening; viruses
Abstract:
... Protein kinases are essential regulators of most cellular processes and are involved in the etiology and progression of multiple diseases. The cdc2-like kinases (CLKs) have been linked to various neurodegenerative disorders, metabolic regulation, and virus infection, and the kinases have been recognized as potential drug targets. Here, we have developed a screening workflow for the identification ...
... Gyrase and topoisomerase IV are the targets of fluoroquinolone antibacterials. However, the rise in antimicrobial resistance has undermined the clinical use of this important drug class. Therefore, it is critical to identify new agents that maintain activity against fluoroquinolone-resistant strains. One approach is to develop non-fluoroquinolone drugs that also target gyrase and topoisomerase IV ...
antibodies; benzoquinones; drugs; heat shock proteins; humans; multiprotein complexes; protein folding; rabbits; radiolabeling; signal transduction; steroid receptors; wheat; wheat germ
Abstract:
... In animal cell lysates, multiprotein complexes containing hsp90, hsp70, p60, p23, and several immunophilins can assemble steroid receptors and oncogenic protein kineses, such as v-Src and v-Raf, into heterocomplexes that contain hsp90 and either immunophilins or, in the case of protein kineses, p50. The complexes with hsp90 are required for the proper functioning of these signal transduction syste ...
Melissa C. Holt; Zahra Assar; Reza Beheshti Zavareh; Lin Lin; Justin Anglin; Oksana Mashadova; Daniel Haldar; Edouard Mullarky; Daniel M. Kremer; Lewis C. Cantley; Alec C. Kimmelman; Adam J. Stein; Luke L. Lairson; Costas A. Lyssiotis
... Pancreatic cancer cells are characterized by deregulated metabolic programs that facilitate growth and resistance to oxidative stress. Among these programs, pancreatic cancers preferentially utilize a metabolic pathway through the enzyme aspartate aminotransferase 1 [also known as glutamate oxaloacetate transaminase 1 (GOT1)] to support cellular redox homeostasis. As such, small molecule inhibitor ...
... Glycinamide ribonucleotide transformylase (GAR Tfase) is a folate-dependent enzyme in the de novo purine biosynthesis pathway, which has long been considered a potential target for development of anti-neoplastic therapeutics. Here we report the biological and X-ray crystallographic evaluations of both independent C10 diastereomers, 10S- and 10R-methylthio-DDACTHF, bound to human GAR Tfase, includi ...
alternative splicing; assays; catalytic activity; cells; degradation; drugs; exhibitions; non-specific serine/threonine protein kinase; phosphorylation; serine; threonine
Abstract:
... The serine/threonine protein kinase casein kinase 1α (CK1α) functions as a negative regulator of Wnt signaling, phosphorylating β-catenin at serine 45 (P–S45) to initiate its eventual ubiquitin-mediated degradation. We previously showed that the repurposed, FDA-approved anthelminthic drug pyrvinium potently inhibits Wnt signaling in vitro and in vivo. Moreover, we proposed that pyrvinium’s Wnt inh ...
... Glutathione S-transferase, from the malarial parasite Plasmodium falciparum (PfGST), exerts a protective role in the organism and is thus considered an interesting target for antimalarial drug development. In contrast to other GSTs, it is present in solution as a tetramer and a dimer in equilibrium, which is induced by glutathione (GSH). These properties prevent a calorimetric titration from being ...
... The recognition of carbohydrates by proteins is a fundamental aspect of communication within and between living cells. Understanding the molecular basis of carbohydrate–protein interactions is a prerequisite for the rational design of synthetic ligands. Here we report the high- to ultra-high-resolution crystal structures of the carbohydrate recognition domain of galectin-3 (Gal3C) in the ligand-fr ...
... Glycopeptide antibiotics inhibit cell wall biosynthesis in Gram-positive bacteria by targeting the peptidoglycan (PG) pentapeptide stem structure (l-Ala-d-iso-Gln-l-Lys-d-Ala-d-Ala). Structures of the glycopeptide complexed with a PG stem mimic have shown that the d-Ala-d-Ala segment is the primary drug binding site; however, biochemical evidence suggests that the glycopeptide–PG interaction invol ...
... Cruzain, an important drug target for Chagas disease, is a member of clan CA of the cysteine proteases. Understanding the catalytic mechanism of cruzain is vital to the design of new inhibitors. To this end, we have determined pH–rate profiles for substrates and affinity agents and solvent kinetic isotope effects in pre-steady-state and steady-state modes using three substrates: Cbz-Phe-Arg-AMC, C ...
... Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that ...
Lewis bases; active sites; binding proteins; catalytic activity; crystallography; drugs; enzyme substrates; enzymes; hepatitis C; histidine; humans; hydrolysis; nucleosides; protons
Abstract:
... Human histidine triad nucleotide binding protein 1 (hHint1) is classified as an efficient nucleoside phosphoramidase and acyl-adenosine monophosphate hydrolase. Human Hint1 has been shown to be essential for the metabolic activation of nucleotide antiviral pronucleotides (i.e., proTides), such as the FDA approved hepatitis C drug, sofosbuvir. The active site of hHint1 comprises an ensemble of stri ...
... Translocator Protein 18 kDa (TSPO), previously known as the peripheral-type benzodiazepine receptor (PBR), is a mitochondrial outer membrane protein that has been identified as a key player in cholesterol and porphyrin transport, apoptotic signaling, and cancer development, as well as neurological inflammation and disease. Despite a number of TSPO ligands whose effects have been studied with respe ...
... Tetrahydrolipstatin (THL) is a covalent inhibitor of many serine esterases. In mycobacteria, THL has been found to covalently react with 261 lipid esterases upon treatment of Mycobacterium bovis cell lysate. However, the covalent adduct is considered unstable in some cases because of the hydrolysis of the enzyme-linked THL adduct resulting in catalytic turnover. In this study, a library of THL ste ...
Alzheimer disease; DNA; binding properties; bioactive properties; calcium; calmodulin; calorimetry; circular dichroism spectroscopy; dimerization; drugs; energy transfer; fluorescence; hydrophobicity; neurons; nuclear magnetic resonance spectroscopy; potassium channels; protein structure; signal transduction; terbium; thermodynamics; transcription factors
Abstract:
... DREAM (also known as K⁺ channel interacting protein 3 and calsenilin) is a calcium binding protein and an active modulator of KV4 channels in neuronal cells as well as a novel Ca²⁺-regulated transcriptional modulator. DREAM has also been associated with the regulation of Alzheimer’s disease through the prevention of presenilin-2 fragmentation. Many interactions of DREAM with its binding partners ( ...
... Histone deacetylases (HDACs) are validated targets for treatment of certain cancer types and play numerous regulatory roles in biology, ranging from epigenetics to metabolism. Small molecules are highly important as tool compounds for probing these mechanisms as well as for the development of new medicines. Therefore, detailed mechanistic information and precise characterization of the chemical pr ...
... Protein methylation is a common post-translational modification with diverse biological functions. Methyllysine reader proteins are increasingly a focus of epigenetics research and play important roles in regulating many cellular processes. These reader proteins are vital players in development, cell cycle regulation, stress responses, oncogenesis, and other disease pathways. The recent emergence ...
... Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not a ...
... P-Glycoprotein (P-gp) is an ATP-dependent efflux pump that clears a wide variety of drugs and toxins from cells. P-gp undergoes large-scale structural changes and demonstrates conformational heterogeneity even within a single catalytic or drug-bound state, although the role of heterogeneity remains unclear. P-gp is found in a variety of cell types that vary in lipid composition, which modulates it ...
circular dichroism spectroscopy; colicins; cytotoxins; drugs; imports; ion channels; models; peptides; protein transport; thermal stability
Abstract:
... The mechanism by which the drug export protein TolC is utilized for import of the cytotoxin colicin E1 across the outer membrane and periplasmic space is addressed. Studies of the initial binding of colicin E1 with TolC, occlusion of membrane-incorporated TolC ion channels, and the structure underlying the colicin–TolC complex were based on the interactions with TolC of individual colicin transloc ...
... Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the act ...
... The multitargeted protein kinase inhibitor midostaurin is approved for the treatment of both newly diagnosed FLT3-mutated acute myeloid leukemia (AML) and KIT-driven advanced systemic mastocytosis. AML is a heterogeneous malignancy, and investigational drugs targeting FLT3 have shown disparate effects in patients with FLT3-mutated AML, probably as a result of their inhibiting different targets and ...
... The catalytic activation of protein kinases requires precise positioning of key conserved catalytic and regulatory motifs in the kinase core. The Regulatory Spine (RS) is one such structural motif that is dynamically assembled upon kinase activation. The RS is also a mutational hotspot in cancers; however, the mechanisms by which cancer mutations impact RS assembly and kinase activity are not full ...
... Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, a ...
... FKBP12 (FK506 binding protein 12 kDa) is an important drug target. Nuclear magnetic resonance (NMR) order parameters, describing amplitudes of motion on the pico- to nanosecond time scale, can provide estimates of changes in conformational entropy upon ligand binding. Here we report backbone and methyl-axis order parameters of the apo and FK506-bound forms of FKBP12, based on ¹⁵N and ²H NMR relaxa ...
... Fibrils composed of tau protein are a pathological hallmark of several neurodegenerative disorders including Alzheimer’s disease (AD). Here we show that when recombinant tau protein is seeded with paired helical filaments (PHFs) isolated from AD brain, the amyloid formed shares many of the structural features of AD PHFs. In contrast, tau amyloids formed with heparin as an inducing agenta common b ...
HIV infections; Human immunodeficiency virus 1; RNA-directed DNA polymerase; active sites; drug resistance; drugs; fluorine; hydrophobicity; mutants; nuclear magnetic resonance spectroscopy; proteins
Abstract:
... HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket, distinct from the enzyme’s active site. We investigated RT–NNRTI interactions by solution ¹⁹F nuclear magnetic resonance (NMR), using singly ¹⁹F-labeled RT proteins. Comparison of ¹ ...
cysteine; drugs; electron transfer; humans; hydrogen bonding; iron; models; mutation; oxidation; protein structure; proteins; redox potential; sulfur
Abstract:
... While its biological function remains unclear, the three-cysteine, one-histidine ligated human [2Fe-2S] cluster containing protein mitoNEET is of interest because of its interaction with the anti-diabetes drug pioglitazone. The mitoNEET [2Fe-2S] cluster demonstrates proton-coupled electron transfer (PCET) and marked cluster instability, which have both been linked to the single His ligand. Highly ...
... Polyketides, an important class of natural products with complex chemical structures, are widely used as antibiotics and other pharmaceutical agents. A clear barrier to heterologous polyketide biosynthesis in Escherichia coli is the lack of (2S)-methylmalonyl-CoA, a common substrate of multimodular polyketide synthases. Here we report a route for synthesizing (2S)-methylmalonyl-CoA from malonyl-Co ...
... UDP-galactopyranose mutase (UGM) catalyzes the interconversion between UDP-galactopyranose and UDP-galactofuranose. Absent in humans, galactofuranose is found in bacterial and fungal cell walls and is a cell surface virulence factor in protozoan parasites. For these reasons, UGMs are targets for drug discovery. Here, we report a mutagenesis and structural study of the UGMs from Aspergillus fumigat ...
... The circulating protein transthyretin (TTR) can unfold, oligomerize, and form highly structured amyloid fibrils that are deposited in tissues, causing organ damage and disease. This pathogenic process is caused by a heritable TTR point mutation in cases of familial TTR-related amyloidosis or wild-type TTR in cases of age-associated amyloidosis (previously called senile systemic amyloidosis). The T ...
animal ovaries; biomarkers; breast neoplasms; cell culture; cell viability; drug resistance; drug therapy; drugs; gene expression regulation; genes; messenger RNA; microRNA; models; neoplasm cells; ovarian neoplasms; paclitaxel; patients; taxanes; tubulin
Abstract:
... The regulation of β-tubulin isotypes, the primary targets for antimitotic chemotherapeutic drugs like taxanes, has implications for drug response and drug resistance. Over the past 15 years, micro-RNAs have been studied widely as regulators of mRNA levels. For example, the tumor suppressor miR-200c was shown in cell culture to target mesenchymal genes, including ZEB1 [Cochrane (2009) Mol. Cancer T ...
... The majority of membrane proteins function as oligomers. However, it remains largely unclear how the oligomer stability of protein complexes correlates with their function. Understanding the relationship between oligomer stability and activity is essential to protein research and to virtually all cellular processes that depend on the function of protein complexes. Proteins make lasting or transien ...
binding sites; crystal structure; dissociation; drugs; fatty acids; human serum albumin; nuclear magnetic resonance spectroscopy; spectral analysis; stable isotopes
Abstract:
... The ability of human serum albumin (HSA) to bind fatty acids (FA) in multiple sites has been revealed by many studies. Here we detect and characterize nine individual binding sites by two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of 18-[¹³C]-oleic acid (OA) complexed with HSA. We characterize site-specific FA binding by addition of (i) different FA molar ratios (from 1:1 to 4: ...
Punthasee Puminan; Laciak Adrian R.; Cummings Andrea H.; Ruddraraju Kasi Viswanatharaju; Lewis Sarah M.; Hillebrand Roman; Singh Harkewal; Tanner John J.; Gates Kent S.
active sites; drugs; enzyme inactivation; mass spectrometry; protein-tyrosine-phosphatase
Abstract:
... Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoac ...
... Dihydrofolate reductase (DHFR) reduces dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. Due to its role in one carbon metabolism, chromosomal DHFR is the target of the antibacterial drug, trimethoprim. Resistance to trimethoprim has resulted in a type II DHFR that is not structurally related to the chromosomal enzyme target. Because of its metabolic significance, understanding DH ...
... Burkholderia cenocepacia is a major concern among respiratory tract infections in cystic fibrosis patients. This pathogen is particularly difficult to treat because of its high level of resistance to the clinically relevant antimicrobial agents. In B. cenocepacia, the quorum sensing cell–cell communication system is involved in different processes that are important for bacterial virulence, such a ...
... The X-ray crystal structure of arginase from Schistosoma mansoni (SmARG) and the structures of its complexes with several amino acid inhibitors have been determined at atomic resolution. SmARG is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea, and this enzyme is upregulated in all forms of the parasite that interact with the human host. ...
... Cage proteins assemble into nanoscale structures with large central cavities. They play roles, including those as virus capsids and chaperones, and have been applied to drug delivery and nanomaterials. Furthermore, protein cages have been used as model systems to understand and design protein quaternary structure. Ferritins are ubiquitous protein cages that manage iron homeostasis and oxidative da ...
... The X-ray crystal structure of an arginase-like protein from the parasitic protozoan Trypanosoma brucei, designated TbARG, is reported at 1.80 and 2.38 Å resolution in its reduced and oxidized forms, respectively. The oxidized form of TbARG is a disulfide-linked hexamer that retains the overall architecture of a dimer of trimers in the reduced form. Intriguingly, TbARG does not contain metal ions ...
Rudolf Jeffrey D.; Bigelow Lance; Chang Changsoo; Cuff Marianne E.; Lohman Jeremy R.; Chang Chin-Yuan; Ma Ming; Yang Dong; Clancy Shonda; Babnigg Gyorgy; Joachimiak Andrzej; Phillips George N.; Shen Ben
... The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase ...
... Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essen ...
... Inosine-5'-monophosphate dehydrogenase (IMPDH) is an attractive drug target for the control of parasitic infections. The enzyme catalyzes the oxidation of inosine monophosphate (IMP)to xanthosine monophosphate (XMP), the committed step in de novo guanosine monophosphate (GMP) biosynthesis. We have determined the crystal structures of IMPDH from the protozoan parasite Tritrichomonas foetus in the a ...
... The crystal structure of the hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase) from Tritrichomonas foetus has been determined and refined against X-ray data to 1.9 angstrom resolution. T. foetus HGXPRTase crystallizes as an asymmetric dimer, with GMP bound to only one of the two molecules that form the asymmetric unit. Each molecule of HGXPRTase is formed by two lobes joined by a ...
... CCL21 chemokine binds the G protein-coupled receptor CCR7, aiding not only in immune response but also in cancer metastasis. Compared with other chemokines, CCL21 has a unique extended unstructured C-terminus that is truncated in some naturally occurring variants. We have determined the X-ray crystallographic structure of a truncated CCL21 (residues 1–79) lacking the extended C-terminus and identi ...
Human immunodeficiency virus; RNA; binding sites; drugs; ligands; transcriptional activation
Abstract:
... Efforts toward the development of RNA-based drug leads have been challenging because of the complexity and dynamic nature of RNA structures as therapeutic targets. The transactivation response (TAR) RNA and cognate Tat protein of HIV have long been recognized as promising antiviral targets, and recent works have identified potentially potent inhibitors of the viral RNA–protein interaction. A new c ...
P-glycoproteins; binding sites; cytotoxicity; drugs; mechanism of action; microtubules; multiple drug resistance; neoplasm cells; paclitaxel; tubulin
Abstract:
... Cyclostreptin is the first microtubule-stabilizing agent whose mechanism of action was discovered to involve formation of a covalent bond with tubulin. Treatment of cells with cyclostreptin irreversibly stabilizes their microtubules because cyclostreptin forms a covalent bond to β-tubulin at either the T220 or the N228 residue, located at the microtubule pore or luminal taxoid binding site, respec ...
... There is growing interest in the use of peptides as therapeutic drugs and, in particular, in the potential of cyclotides, a family of cyclic peptides with remarkable stability and amenability to sequence engineering, as scaffolds in drug design. As well as having an ultrastable structure, many natural cyclotides have intrinsic biological activities with potential pharmaceutical or agricultural app ...
... The dengue virus protease (NS2B-NS3pro) plays a critical role in the dengue viral life cycle, making it an attractive drug target for dengue-related pathologies, including dengue hemorrhagic fever. A number of studies indicate that NS2B-NS3pro undergoes a transition between two widely different conformational states: an “open” (inactive) conformation and a “closed” (active) conformation. For the p ...
... Organic anion transporting polypeptide (OATP) 1B1 is an important drug transporter expressed in human hepatocytes. Previous studies have indicated that transmembrane (TM) domain 2, 6, 8, 9, and in particular 10 might be part of the substrate binding site/translocation pathway. To explore which amino acids in TM10 are important for substrate transport, we mutated 34 amino acids individually to cyst ...
... Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b₅ (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hyd ...
DNA; DNA fragmentation; HIV infections; Human immunodeficiency virus; Mycobacterium tuberculosis; calorimetry; consensus sequence; drug resistance; drugs; gel electrophoresis; genes; human health; pathogens; phosphorylation; promoter regions; systematic evolution of ligands by exponential enrichment; titration; transcription (genetics); tuberculosis; virulence
Abstract:
... Tuberculosis has reemerged as a serious threat to human health because of the increasing prevalence of drug-resistant strains and synergetic infection with HIV, prompting an urgent need for new and more efficient treatments. The PhoP–PhoR two-component system of Mycobacterium tuberculosis plays an important role in the virulence of the pathogen and thus represents a potential drug target. To study ...
DNA; DNA methylation; S-adenosylmethionine; active sites; cytosine; drugs; energy; epigenetics; genome; human diseases; mammals; methyltransferases; molecular dynamics; neoplasms; prokaryotic cells; thermodynamics
Abstract:
... DNA cytosine methyltransferases regulate the expression of the genome through the precise epigenetic marking of certain cytosines with a methyl group, and aberrant methylation is a hallmark of human diseases including cancer. Targeting these enzymes for drug design is currently a high priority. We have utilized ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simul ...
... Transcription in prokaryotes is a multistep process and is primarily regulated at the initiation stage. σ factors are involved in promoter recognition and thus govern prokaryotic gene expression. Mycobacterium tuberculosis (Mtb) σ factors have been previously suggested as important drug targets through large-scale genome analyses. Here we demonstrate the feasibility of specific targeting of Mtb σ ...
biotransformation; blood flow; blood serum; cardiovascular diseases; cysteine; drugs; hemoglobin; humans; hydrolysis; in vitro studies; ischemia; liquid chromatography; mass spectrometry; mechanism of action; nitrates; nitric oxide; oxygen
Abstract:
... We have developed novel nitric oxide (NO)-releasing prodrugs of efaproxiral (RSR13) for their potential therapeutic applications in a variety of diseases with underlying ischemia. RSR13 is an allosteric effector of hemoglobin (Hb) that decreases the protein’s affinity for oxygen, thereby increasing tissue oxygenation. NO, because of its vasodilatory property, in the form of ester prodrugs has been ...
Staphylococcus aureus; binding sites; biosynthesis; biphenyl; crosslinking; drugs; glycopeptides; hydrophobicity; mechanism of action; nuclear magnetic resonance spectroscopy; peptidoglycans
Abstract:
... We have used solid-state nuclear magnetic resonance to characterize the exact nature of the dual mode of action of oritavancin in preventing cell-wall assembly in Staphylococcus aureus. Measurements performed on whole cells labeled selectively in vivo have established that des-N-methylleucyl-N-4-(4-fluorophenyl)benzyl-chloroeremomycin, an Edman degradation product of [¹⁹F]oritavancin, which has a ...
... For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane protei ...
... Multidrug resistance against the existing antibiotics is becoming a global threat, and any potential drug that can be designed using cationic antimicrobial peptides (AMP) could be an alternate solution to alleviate this existing problem. The mechanism of action of killing bacteria by an AMP differs drastically in comparison to that of small molecule antibiotics. The main target of AMPs is to inter ...
... It is increasingly recognized that the structures and dynamics of G-quadruplex DNA molecules are dictated by their sequences and greatly affected by environmental factors. The core guanine tetrads (G-tetrads) coordinate cations and display a strong conformational rigidity compared with that of the connecting loops. Although long loops linking the G-tetrads are typically disfavored, when present, t ...
ABC transporters; assays; cells; drugs; heat-shock protein 90; inflammation; libraries; ligands; nervous system diseases; screening; signal transduction; therapeutics
Abstract:
... Because of its critical roles in regulating cellular signal transduction, the molecular chaperone heat-shock protein 90 (Hsp90) has become a novel therapeutic target for various diseases, including cancer, inflammation, and neurological diseases. However, the lack of methods that allow us to directly evaluate the binding of small molecule ligands to intracellular Hsp90 makes the inhibitor developm ...
ABC transporters; cytotoxicity; drug therapy; drugs; humans; multiple drug resistance; neoplasms; oligomerization; site-directed mutagenesis; stem cells
Abstract:
... ABCG2 is a member of the ATP-binding cassette transporter superfamily, and its overexpression causes multidrug resistance (MDR) in cancer chemotherapy. ABCG2 may also protect cancer stem cells by extruding cytotoxic materials. ABCG2 has previously been shown to exist as a high-order homo-oligomer consisting of possibly 8–12 subunits, and the oligomerization domain was mapped to the C-terminal doma ...
... The tight complexes FKBP12 forms with immunosuppressive drugs, such as FK506 and rapamycin, are frequently used as models for developing approaches to structure-based drug design. Although the interfaces between FKBP12 and these ligands are well-defined structurally and are almost identical in the X-ray crystallographic structures of various complexes, our nuclear magnetic resonance studies have r ...
... Previously (Heller, L. E., and Roepe, P. D. Quantification of Free Ferriprotoporphyrin IX Heme and Hemozoin for Artemisinin Sensitive versus Delayed Clearance Phenotype Plasmodium falciparum Malarial Parasites. Biochemistry, DOI: 10.1021/acs.biochem.8b00959, preceding paper in this issue), we quantified free ferriprotoporphyrin IX (FPIX) heme abundance for control versus delayed clearance phenotyp ...
... Traditional antibody generation, using either phage display or animal immunization, relies on purified antigens. Many membrane proteins, such as G protein-coupled receptors, solute carriers, or ion channels, are important drug targets but very challenging for the formation of antibodies due to the difficulty of protein purification. Whole-cell panning is an alternative approach for generating anti ...
... Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and t ...
... NADP⁺-dependent malic enzyme 1 (ME1) decarboxylates malate to form pyruvate and NADPH in the cytoplasm, where it mediates diverse biological functions related to the generation of lipids and other cellular building blocks. As such, ME1 has been implicated in the progression of cancers and has received attention as a promising drug target. Here we report the identification of a novel small-molecule ...
... Achieving selectivity across the human kinome is a major hurdle in kinase inhibitor drug discovery. Targeting inactive (vs active) kinase conformations offers advantages in achieving selectivity because of their more diversified structures. Discovery of inactive conformation-selective inhibitors, however, has been hampered partly by the lack of general assay methods. Herein, we show that such inhi ...
T-lymphocytes; adenosine triphosphate; drugs; humans; immunotherapy; protein phosphorylation; serine; threonine
Abstract:
... Achieving selectivity across the human kinome is a major hurdle in kinase inhibitor drug discovery. Assays using active, phosphorylated protein kinases bias hits toward poorly selective inhibitors that bind within the highly conserved adenosine triphosphate (ATP) pocket. Targeting inactive (vs active) kinase conformations offers advantages in achieving selectivity because of their more diversified ...
... B-cell lymphoma 6 (BCL6) is the most frequently involved oncogene in diffuse large B-cell lymphomas (DLBCLs). BCL6 shows potent transcriptional repressor activity through interactions with its corepressors, such as BCL6 corepressor (BCOR). The inhibition of the protein–protein interaction (PPI) between BCL6 and its corepressors suppresses the growth of BCL6-dependent DLBCLs, thus making BCL6 an at ...
Vinca; binding sites; cell division; colchicine; drugs; enthalpy; entropy; flight; ligands; molecular dynamics; paclitaxel; rocks; tubulin; van der Waals forces
Abstract:
... Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as p ...
Afanador Gustavo A.; Muench Stephen P.; McPhillie Martin; Fomovska Alina; Schön Arne; Zhou Ying; Cheng Gang; Stec Jozef; Freundlich Joel S.; Shieh Hong-Ming; Anderson John W.; Jacobus David P.; Fidock David A.; Kozikowski Alan P.; Fishwick Colin W.; Rice David W.; Freire Ernesto; McLeod Rima; Prigge Sean T.
NAD (coenzyme); Toxoplasma gondii; biocides; dissociation; drugs; enzyme inhibition; fatty acids; humans; mechanism of action; medicine; parasites; pathogens; prediction
Abstract:
... Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway that is distinct from the type I pathway found in humans. Enoyl-acyl carrier protein reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal ch ...
... The dynamic behavior of the rRNA A-site plays an important functional role. We have employed femtosecond time-resolved spectroscopy to investigate the nature of the conformational dynamics. In the drug-free state, the A-site samples multiple distinct conformations. Drug binding shifts the population distribution in a drug-specific manner. Motions of bases on nanosecond and picosecond time scales a ...
Human immunodeficiency virus 1; Human immunodeficiency virus 2; drugs; fluorescence emission spectroscopy; small nuclear RNA
Abstract:
... Noncoding 7SK snRNA is believed to play an important role in the recruitment of P-TEFb by viral protein Tat to stimulate HIV processive transcription. Because HIV-2 TAR RNA and 7SK both evolved to feature a dinucleotide bulge region, compared to the trinucleotide bulge for HIV-1 TAR, ultrafast time-resolved fluorescence spectroscopy has been used to probe the conformational landscape of HIV-2 TAR ...
Adenoviridae; Western blotting; adenosine triphosphate; anti-inflammatory activity; antioxidant activity; apolipoprotein A-I; apolipoprotein E; biogenesis; drugs; high density lipoprotein cholesterol; human health; lipid composition; mice; tumor necrosis factor-alpha
Abstract:
... In addition to high-density lipoprotein cholesterol (HDL-C) levels, HDL quality also appears to be very important for atheroprotection. Analysis of various clinical paradigms suggests that the lipid and apolipoprotein composition of HDL defines its size, shape, and functions and may determine its beneficial effects on human health. Previously, we reported that like apolipoprotein A-I (Apoa1), apol ...
... In the study of allosteric proteins, understanding which effector–protein interactions contribute to allosteric activation is important both for designing allosteric drugs and for understanding allosteric mechanisms. The antihyperglycemic target, human liver pyruvate kinase (hL-PYK), binds its allosteric activator, fructose 1,6-bisphosphate (Fru-1,6-BP), such that the 1′-phosphate interacts with s ...
... Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on c ...
... FKBP22, a protein expressed by Escherichia coli, possesses PPIase (peptidyl-prolyl cis-trans isomerase) activity, binds FK506 (an immunosuppressive drug), and shares homology with Legionella Mip (a virulence factor) and its related proteins. To understand the domain structure and the folding–unfolding mechanism of Mip-like proteins, we investigated a recombinant E. coli FKBP22 (His-FKBP22) as a mo ...
Bacillus anthracis; DNA; DNA damage; DNA topoisomerase; catalytic activity; ciprofloxacin; drug interactions; drugs; magnesium; mutants; mutation; serine
Abstract:
... Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone acti ...
... Azoles and pyridines are commonly incorporated into small molecule inhibitor scaffolds that target cytochromes P450 (CYPs) as a strategy to increase drug binding affinity, impart isoform-dependent selectivity, and improve metabolic stability. Optical absorbance spectra of the CYP–inhibitor complex are widely used to infer whether these inhibitors are ligated directly to the heme iron as catalytica ...
... There is no high-resolution crystal structure of the human P-glycoprotein (P-gp) drug pump. Homology models of human P-gp based on the crystal structures of mouse or Caenorhabditis elegans P-gps show large differences in the orientation of transmembrane segment 5 (TM5). TM5 is one of the most important transmembrane segments involved in drug–substrate interactions. Drug rescue of P-gp processing m ...
adenosine; artificial intelligence; cAMP-dependent protein kinase; drugs; glycine (amino acid); isoquinolines; nuclear magnetic resonance spectroscopy; prototypes; therapeutics
Abstract:
... In 1984, Japanese researchers led by the biochemist Hiroyoshi Hidaka described the first synthetic protein kinase inhibitors based on an isoquinoline sulfonamide structure (Hidaka et al. Biochemistry, 1984 Oct 9; 23(21): 5036–41. doi: 10.1021/bi00316a032). These led to the first protein kinase inhibitor approved for medical use (fasudil), an inhibitor of the AGC subfamily Rho kinase. With potencie ...
... Drug substrates stimulate ATPase activity of the P-glycoprotein (P-gp) ATP-binding cassette drug pump by an unknown mechanism. Cross-linking analysis was performed to test if drug substrates stimulate P-gp ATPase activity by altering cross-talk at the first transmission interface linking the drug-binding [intracellular loop 4 (S909C)] and first nucleotide-binding domains [NBD1 (V472C or L443C)]. I ...
active sites; drug interactions; drugs; metabolism; molecular dynamics; simulation models
Abstract:
... Heterotropic interactions between atorvastatin (ARVS) and dronedarone (DND) have been deciphered using global analysis of the results of binding and turnover experiments for pure drugs and their mixtures. The in vivo presence of atorvastatin lactone (ARVL) was explicitly taken into account by using pure ARVL in analogous experiments. Both ARVL and ARVS inhibit DND binding and metabolism, while a s ...
... The two RNA-dependent RNA polymerase inhibitors remdesivir and favipiravir were originally developed and approved as broad-spectrum antiviral drugs for the treatment of harmful viral infections such as Ebola and influenza. With the outbreak of the global SARS-CoV-2 pandemic, the two drugs were repurposed for the treatment of COVID-19 patients. Clinical studies suggested that the efficacy of the dr ...