An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
... Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-β-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4)-linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient ...
... In comparison to imidazole (IMZ) and 1,2,4-triazole (1,2,4-TRZ), the isosteric 1,2,3-triazole (1,2,3-TRZ) is unrepresented among cytochrome P450 (CYP) inhibitors. This is surprising because 1,2,3-TRZs are easily obtained via “click” chemistry. To understand this underrepresentation of 1,2,3-TRZs among CYP inhibitors, thermodynamic and density functional theory computational studies were performed ...
Arabidopsis thaliana; DNA; DNA methylation; X chromosome; active sites; animals; cytosine; gene expression; genes; glycosylases; models; transposons
Abstract:
... Methylation of cytosine to 5-methylcytosine (5mC) is important for gene expression, gene imprinting, X-chromosome inactivation, and transposon silencing. Active demethylation in animals is believed to proceed by DNA glycosylase removal of deaminated or oxidized 5mC. In plants, 5mC is removed from the genome directly by the DEMETER (DME) family of DNA glycosylases. Arabidopsis thaliana DME excises ...
... Histone H3 arginine 2 (H3R2) is post-translationally modified in three different states by “writers” of the protein arginine methyltransferase (PRMT) family. H3R2 methylarginine isoforms include PRMT5-catalyzed monomethylation (me1) and symmetric dimethylation (me2s) and PRMT6-catalyzed me1 and asymmetric dimethylation (me2a). WD-40 repeat-containing protein 5 (WDR5) is an epigenetic “reader” prot ...
active sites; catalytic activity; energy transfer; enzymes; models; solvents
Abstract:
... Even after a century of investigation, our understanding of how enzymes work remains far from complete. In particular, several factors that enable enzymes to achieve high catalytic efficiencies remain only poorly understood. A number of theories have been developed, which propose or reaffirm that enzymes work as structural scaffolds, serving to bring together and properly orient the participants s ...
Robert Shaffer; Anthony M. DeMaria; Larisa Kagermazova; Yuekun Liu; Milad Babaei; Suhaily Caban-Penix; Arisdelsy Cervantes; Stefan Jehle; Lee Makowski; Thomas D. Gilmore; Adrian Whitty; Karen N. Allen
... NF-κB essential modulator (NEMO) regulates NF-κB signaling by acting as a scaffold for the kinase IKKβ to direct its activity toward the NF-κB inhibitor, IκBα. Here, we show that a highly conserved central region of NEMO termed the intervening domain (IVD, amino acids 112–195) plays a key role in NEMO function. We determined a structural model of full-length NEMO by small-angle X-ray scattering an ...
... Ribonucleoprotein (RNP) condensations through liquid–liquid phase separation play vital roles in the dynamic formation–dissolution of stress granules (SGs). These condensations are, however, usually assumed to be linked to pathologic fibrillation. Here, we show that physiologic condensation and pathologic fibrillation of RNPs are independent processes that can be unlinked with the chemical chapero ...
... Protamines are small, highly positively charged peptides used to package DNA at very high densities in sperm nuclei. Tight DNA packing is considered essential for the minimization of DNA damage by mutagens and reactive oxidizing species. A striking and general feature of protamines is the almost exclusive use of arginine over lysine for the positive charge to neutralize DNA. We have investigated w ...
... The formation of the mollusk shell requires the participation of proteins, many of which may be interactive with one another. We examined a model protein pair system from the mollusk Haliotis rufescens, wherein we probed the interactions between recombinant forms of two major nacre layer proteins, AP7, and the glycoprotein, AP24. Here, the focus was on the impact that the AP24 glycosylation and pr ...
... A conserved, crystallographically defined bile acid binding site was originally identified in the membrane domain of mammalian and bacterial cytochrome c oxidase (CcO). Current studies show other amphipathic molecules including detergents, fatty acids, steroids, and porphyrins bind to this site and affect the already 50% inhibited activity of the E101A mutant of Rhodobacter sphaeroides CcO as well ...
Escherichia coli; amyloid; bacterial culture; circular dichroism spectroscopy; detergents; disulfide bonds; fluorescence; hydrogen; lipids; mass spectrometry; models; neurotoxicity; peptides; polyacrylamide gel electrophoresis; reversed-phase high performance liquid chromatography; transmission electron microscopy
Abstract:
... Aβ dimers are a basic building block of many larger Aβ oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer’s disease. Homogeneous Aβ dimers are difficult to prepare, characterize, and study because Aβ forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AβC₁₈C₃₃ as a disulfide- ...
... Bacterial outer membrane TonB-dependent transporters function by executing cycles of binding and unbinding to the inner membrane protein TonB. In the vitamin B₁₂ transporter BtuB and the ferric citrate transporter FecA, substrate binding increases the periplasmic exposure of the Ton box, an energy-coupling segment. This increased exposure appears to enhance the affinity of the transporter for TonB ...
... The members of the glutamine amidotransferase (GATase) family catalyze the incorporation of ammonia within numerous metabolic pathways and can be categorized in two classes. Here, we concentrated on class I GATases, which are heteromeric enzyme complexes consisting of synthase subunits and glutaminase subunits with a catalytic Cys-His-Glu triad. Glutamine hydrolysis at the glutaminase subunit is ( ...
... In nearly half of cancers, the anticancer activity of p53 protein is often impaired by the overexpressed oncoprotein Mdm2 and its homologue, MdmX, demanding efficient therapeutics to disrupt the aberrant p53–MdmX/Mdm2 interactions to restore the p53 activity. While many potent Mdm2-specific inhibitors have already undergone clinical investigations, searching for MdmX-specific inhibitors has become ...
energy; hydrophobicity; models; molecular dynamics; mutants; network theory; nuclear magnetic resonance spectroscopy; point mutation; prediction; thermodynamics; ubiquitin
Abstract:
... Mutations in the hydrophobic interior of proteins are generally thought to weaken the interactions only in their immediate neighborhood. This forms the basis of protein engineering-based studies of folding mechanism and function. However, mutational work on diverse proteins has shown that distant residues are thermodynamically coupled, with the network of interactions within the protein acting as ...
artificial intelligence; assays; energy transfer; enzyme activity; enzymes; kinetics; models; signal transduction; ubiquitin; ubiquitination
Abstract:
... The ubiquitin (Ub) system regulates a wide range of cellular signaling pathways. Several hundred E1, E2, and E3 enzymes are together responsible for protein ubiquitination, thereby controlling cellular activities. Due to the numerous enzymes and processes involved, studies of ubiquitination activities have been challenging. We here report a novel Förster resonance energy transfer (FRET)-based ass ...
Madeline Y. Wong; Ngoc Duc Doan; Andrew S. DiChiara; Louis J. Papa; Jaime H. Cheah; Christian K. Soule; Nicki Watson; John D. Hulleman; Matthew D. Shoulders
biosynthesis; bone formation; cell lines; collagen; endoplasmic reticulum; extracellular matrix; fibrosis; genetic disorders; humans; luminescence; models; neoplasms; secretion; therapeutics; type I secretion system
Abstract:
... Collagen overproduction is a feature of fibrosis and cancer, while insufficient deposition of functional collagen molecules and/or the secretion of malformed collagen is common in genetic disorders like osteogenesis imperfecta. Collagen secretion is an appealing therapeutic target in these and other diseases, as secretion directly connects intracellular biosynthesis to collagen deposition and biol ...
... A wide variety of steroid metabolites synthesized by eukaryotes are all ultimately catabolized by bacteria; while generally saprophytic, pathogenic Mycobacteria have repurposed these pathways to utilize host intracellular cholesterol pools. Steroid degradation is complex, but a recurring theme is that cycles of β-oxidation are used to iteratively remove acetyl- or propanoyl-CoA groups. These β-oxi ...
... The nonenzymatic polymerization of RNA may have enabled copying of functional sequences during the origin of life. Recent progress utilizing 5′-phosphoro-2-aminoimidazole activation has reinvigorated the possibility of using nonenzymatic RNA polymerization for copying arbitrary sequences. However, the reasons why 2-aminoimidazole (AI) is a superior activation group remain unclear. Here we report t ...
... The skin is an attractive site for vaccination and harbors a dense network of Langerhans cells that are the prime target for antigen delivery approaches in the epidermis. While specific targeting of Langerhans cells has been shown to elicit the necessary T-cell response using antibody-based delivery approaches, the targeted administration of particulate antigens in the form of nanoparticle-based v ...