An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
... Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant ...
... The present review highlights the bioenergetic role of polyamines in plant protection and development and proposes a universal model for describing polyamine-mediated stress responses. Any stress condition induces an excitation pressure on photosystem II by reforming the photosynthetic apparatus. To control this phenomenon, polyamines act directly on the molecular structure and function of the pho ...
... The communication between chloroplasts and mitochondria, which depends on the inter-organellar exchange of carbon skeletons, energy, and reducing equivalents, is essential for maintaining efficient respiratory metabolism and photosynthesis. We devised a multi-transgene approach to manipulate the leaf energy and redox balance in tobacco (Nicotiana tabacum) while monitoring the in vivo cytosolic red ...
... During germination, the availability of sugars, oxygen, or cellular energy fluctuates under dynamic environmental conditions, likely affecting the global RNA profile of rice genes. Most genes that exhibit sugar-regulation in rice embryos under aerobic conditions are responsive to low energy and anaerobic conditions, indicating that sugar regulation is strongly associated with energy and anaerobic ...
... Metamitron (MET) is a fruitlet thinning compound for apple trees, needing better understanding of its action on leaf energy metabolism, depending on nighttime temperature. A trial under environmental controlled conditions was set with ‘Golden Reinders’ potted trees, under 25/7.5 and 25/15 °C (diurnal/nighttime temperature), with (MET, 247.5 ppm) or without (CTR) application, and considering the mo ...
... Photosynthesis in host plants is significantly reduced by many virus families. The early detection of viral infection before the onset of visual symptoms in both directly and systemically infected leaves is critical in crop protection. Viral pathogens cause a variety of symptoms through modifications of chloroplast structure and function and the response of the photochemistry process is immediate. ...
... The major effect of nitrogen (N) deficiency is the inhibition on CO₂ assimilation regulated by light energy absorption, transport and conversion, as well as N allocation. In this study, a yellow-green wheat mutant (Jimai5265yg) and its wild type (Jimai5265, WT) were compared between 0 mM N (N₀) and 14 mM N (N₁₄) treatments using hydroponic experiments. The mutant exhibited higher photosynthetic ef ...
... C4 plants are superior to C3 plants in terms of productivity and limited photorespiration. PPDK (pyruvate orthophosphate dikinase) and NADP-ME (NADP-dependent malic enzyme) are two important photosynthetic C4-specific enzymes present in the mesophyll cells of C4 plants. To evaluate the effect of C4 enzymes in rice, we developed transgenic rice lines by separately introducing Setaria italica PPDK [ ...
... Most CO₂ on Earth is fixed into organic matter via reactions catalysed by enzymes called carboxylases. CO₂-fixation via carboxylases occurs in the Calvin-Benson-Bassham (CBB) cycle, and the crucial role in this cycle is played by RubisCO (D-ribulose 1,5-bisphosphate carboxylase/oxygenase). CO₂ can also be fixed by pathways, where a reduction of CO₂ to formate or carbon monoxide (CO) occurs. The la ...
... The response of plant species to external factors depends partly on the interaction with the environment and with the other species that coexist in the same ecosystem. Several studies have investigated the main traits that determine the competitive capacity of plant species, and although the relevance of the traits is not clear, traits both from belowground and aboveground have been observed. In t ...
... Indole-3-acetic acid (IAA) conjugation is one of the mechanisms responsible for auxin homeostasis. IAA ester conjugates biosynthesis has been studied during development of maize seeds where IAA-inositol (IAInos) and its glycosidic forms make up about 50 % of its ester conjugates pool. 1-O-indole-3-acetyl-β-d-glucose (IAGlc) synthase and indole-3-acetyl transferase (IAInos synthase) are key enzymes ...
... Previous work showed in tomato plants harbouring the Agrobacterium rhizogenes rolB gene overexpression of genes involved in chloroplast function and stress response, significant increase in non-photochemical quenching and chlorophyll a and b content, and reduced chlorophyll a/b ratio. The latter condition being typical of plant shade where far-red is dominant, suggested a role for rolB in improvin ...
... The absorption of Photosynthetically Active Radiation (PAR) by different foliar pigments defines the amount of energy available for photosynthesis and also the need for photoprotection. Both characteristics reveal essential information about productivity, development, and stress acclimation of plants. Here we present an approach for the estimation of the efficiency by three foliar pigment groups ( ...
... Mitochondrial F₁F₀-ATP synthase (F₁F₀-ATPase) inhibitor factor 1 (IF1) has been extensively characterized as an endogenous inhibitor that prevents the hydrolysis of adenosine-5'-triphosphate (ATP) by mitochondrial ATPases in mammals and yeasts; however, IF1’s functions in plants remain unclear. Here, a comprehensive bioinformatic analysis was performed to identify plant mitochondrial F₁F₀-ATPase I ...
... Vine cuttings with six to eight unfolded leaves are utilized as is conventional in sweetpotato (Ipomoea batatas (L.) Lam.) seedling production. However, most vine cuttings wilt after transplanting into the field. Moreover, few researchers have examined the influence of photon flux density (PFD) provided by white or white plus red light-emitting diodes (LEDs) on sweetpotato plantlets. In this study ...
Persea americana; avocados; canopy; carbohydrates; carbon dioxide; chlorophyll; dry matter content; electron transfer; energy; flowering; fluorescence; fruit maturity; fruit trees; fruiting; leaves; mesocarp; orchards; photochemistry; photosystem II; radiation resistance; stomatal conductance; water use efficiency; South Africa
Abstract:
... A reduction in photosynthesis results in a reduced CO₂ assimilation rate and availability of carbohydrates essential for fruit growth and development. This study determined photosynthetic efficiency and photoprotection mechanisms within and outside leaf canopy positions in ‘Gem’ avocado orchards and their relationship with avocado fruit maturity. The study was conducted in a commercial orchard at ...
... Studies have confirmed that on the ground, the plant cells must expend energy to maintain positional homeostasis against gravity. Under microgravity conditions, such energy may be saved for other process such as biosynthesis of beneficial metabolites for growth. This hypothesis was examined on a cell line of tobacco (Nicotiana tabacum cv. Burley 21). The cells were continuously treated with 2-D cl ...
... This study aimed to investigate the firmness retention by ethylene treatment in olive fruit, as observed earlier. Ethylene concentrations up to 1000 μL L−1 were applied to dark green ‘Konservolia’ olives harvested shortly before the green maturation and exposed to 20 °C for up to 9 d. Surprisingly, the results indicated a tendency to fruit firmness increases in concentration-dependent manner in a ...
... Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via ‘anoxic’ cores rather than being triggered by O2 sensors. The evidence for ‘anoxic’ cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the ‘anaerobic enzym ...
... Flooding negatively affects the growth and even survival of most terrestrial plants. Upon flooding, the excess water quickly decreases the gas exchange between atmosphere and the submerged plant tissues, which leads to oxygen deficiency resulting in a plant cell energy crisis, and eventually plant death. Solanum dulcamara survives flooding by producing aerenchymatous adventitious roots (ARs) from ...
Jesús Alberto Pérez-Romero; Yanina Lorena Idaszkin; Bernardo Duarte; Alexandra Baeta; João Carlos Marques; Susana Redondo-Gómez; Isabel Caçador; Enrique Mateos-Naranjo
... A glasshouse experiment was designed to investigate the effect of the co-occurrence of 400 and 700ppm CO2 at 0, 15 and 45mM Cu on the Cu-tolerance of C4 cordgrass species Spartina densiflora, by measuring growth, gas exchange, efficiency of PSII, pigments profiles, antioxidative enzyme activities and nutritional balance. Our results revealed that the rising atmospheric CO2 mitigated growth reducti ...
... The unicellular model alga Micrasterias denticulata inhabits acid peat bogs that are highly endangered by pollutants due to their high humidity. As it was known from earlier studies that algae like Micrasterias are capable of storing barium naturally in form of BaSO4 crystals, it was interesting to experimentally investigate distribution and sequestration of barium and the chemically similar alkal ...
... Boron (B) toxicity frequently affects plant performances and productivity, especially in arid and semi-arid environments. In this experiment, loquat seedlings were subjected to 25 μM (control) or 400 μM B (B excess) to test the hypothesis that (i) B alters sugar/polyol metabolism in polyol-producing tree species as loquat and (ii) changes of leaf and stem anatomy assist young tissues against toxic ...
... The proton motive force (pmf) across the thylakoid membranes plays a key role for photosynthesis in fluctuating light. However, the mechanisms underlying the regulation of pmf in fluctuating light are not well known. In this study, we aimed to identify the roles of chloroplastic ATP synthase and cyclic electron flow (CEF) around photosystem I (PSI) in the regulation of the pmf in fluctuating light ...
... Low water availability is a major abiotic factor limiting photosynthesis and the growth and yield of crops. Maize (Zea mays) is among the most drought-sensitive cereal crops. Herein, the physiological and proteomic changes of maize seedlings caused by polyethylene-glycol-induced water deficit were analyzed. The results showed that malondialdehyde and proline contents increased continuously in the ...
... Analysis of the transcriptomic changes produced in response to hypoxia in root tissues from two rootstock Prunus genotypes differing in their sensitivity to waterlogging: resistant Myrobalan ‘P.2175′ (P. cerasifera Erhr.), and sensitive ‘Felinem’ hybrid [P. amygdalus Batsch × P. persica (L.) Batsch] revealed alterations in both metabolism and regulatory processes. Early hypoxia response in both ge ...
... Recalcitrant seeds, unlike orthodox types, are desiccation sensitive and hence, cannot be stored using conventional seed storage methods In this study, relative changes of protein expression in T. dregeana seeds during desiccation and hydrated storage (a short- to medium-term storage method) were analysed to understand the basis of their desiccation- and storage-induced viability loss. Isobaric Ta ...
... Autophagy is regarded as crucial intracellular process in plant development but also in intracellular stress response. It is known to be controlled by the energy level of the cell and consequently can be triggered by energy deprivation. In this study carbon starvation evoked in different ways was investigated in the freshwater algae model system Micrasterias denticulata (Streptophyta) which is clo ...
... Plants of Chrysanthemum morifolium (sun species) and Spathiphyllum lanceifolium (shade species) were used to study the effects of chilling stems under high illumination. The stress conditions resulted in a greater accumulation of H2O2 in C. morifolium than in S. lanceifolium, and in the down–regulation of photosynthetic linear electron transport in both species. However, only a slight decrease in ...
... This study was aimed at the identification and quantification of the protein components of the pollen grains in parallel with the distal stigmatic tissue of tetraploid cultivars. Proteomes were analyzed using iTRAQ 4plex labeling, peptides separation by online RP-nano-LC and analysis by ESI–MS/MS. Protein identification and quantification were made using the Asparagales database as a reference. A ...
... Molecular processes involved in photosystem II adaptation of woody species to diurnal changes in light and temperature conditions are still not well understood. Regarding this, here we investigated differences between young and mature leaves of common fig (Ficus carica L.) in photosynthetic performance as well as accumulation of the main photosynthetic proteins: light harvesting complex II, D1 pro ...
... Triacylglycerols (TAGs) are the most important energy storage form in oilseed crops. Diacylglycerol acyltransferase (DGAT) catalyzes the rate-limiting step of the Kennedy pathway of TAG biosynthesis. To date, little is known about the regulation of DGAT activity in peanut (Arachis hypogaea), an agronomically important oilseed crop that is cultivated in many parts of the world. In this study, seven ...
Cistus monspeliensis; carboxylation; electron transfer; energy; gas exchange; leaves; light intensity; photons; photosynthesis; stomatal conductance; water stress
Abstract:
... The differential degree by which paraheliotropism may counterbalance the deleterious impact of high irradiance between congeneric species in relation to different water availabilities has been poorly investigated. We followed the evolution of gas exchange, quenching analysis and OJIP parameters in restrained (R) and free (F) to move leaves of Cistus monspeliensis (CM) and Cistus salvifolius (CS) u ...
Fabrizio Araniti; Monica Scognamiglio; Angela Chambery; Rosita Russo; Assunta Esposito; Brigida D’Abrosca; Antonio Fiorentino; Antonio Lupini; Francesco Sunseri; Maria Rosa Abenavoli
... In this study, the effects of the allelochemical coumarin through a metabolomic, proteomic and morpho-physiological approach in Arabidopsis adult plants (25days old) were investigated. Metabolomic analysis evidenced an increment of amino acids and a high accumulation of soluble sugars, after 6days of coumarin treatment. This effect was accompanied by a strong decrease on plant fresh and dry weight ...
Citrus maxima; Citrus sinensis; amino acid metabolism; cytoskeleton; energy; leaf protein; leaves; manganese; photorespiration; protein composition; pummelos; reactive oxygen species; roots; seedlings; signal transduction; stress response; two-dimensional gel electrophoresis
Abstract:
... Manganese (Mn)-intolerant ‘Sour pummelo’ (Citrus grandis) and Mn-tolerant ‘Xuegan’ (Citrus sinensis) seedlings were irrigated for 17 weeks with 2 (control) or 600μM (Mn-toxicity or −excess) MnSO4. C. sinensis had higher Mn-tolerance than C. grandis, as indicated by the higher photosynthesis rates in Mn-excess C. sinensis leaves. Under Mn-toxicity, Mn levels were similar between C. sinensis and C. ...
... Ascorbate (AsA) is very important in scavenging reactive oxygen species in plants. AsA can reduce photoinhibition by xanthophyll cycle to dissipate excess excitation energy. GGP is an important enzyme in AsA biosynthesis pathway in higher plants. In this study, we cloned a gene, SlGGP-LIKE, that has the same function but different sequence compared with SlGGP. The function of SlGGP-LIKE gene in re ...
Populus canadensis; abscisic acid; amino acids; cycloheximide; energy; lipid metabolism; pentose phosphate cycle; protein folding; protein synthesis; proteolysis; proteome; seed germination; seeds; storage proteins; tricarboxylic acid cycle
Abstract:
... Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate ...
biochemical pathways; bioinformatics; cell cycle; cell walls; data collection; energy; energy metabolism; enzyme activity; fuelwood; gene expression regulation; plant hormones; protein composition; protein synthesis; proteins; proteomics; quantitative polymerase chain reaction; staining; stems; tree breeding; wood properties
Abstract:
... Wood is the most important natural source of energy and also provides fuel and fiber. Considering the significant role of wood, it is critical to understand how wood is formed. Integration of knowledge about wood development at the cellular and molecular levels will allow more comprehensive understanding of this complex process. In the present study, we used a comparative proteomic approach to inv ...
... Cyclic electron flow (CEF) around photosystem I (PSI) is essential for photosynthesis in mature leaves. However, the physiological roles of CEF in immature leaves are little known. Here, we measured the PSI and PSII activities, light response changes in PSI and PSII energy quenching for immature and mature leaves of Erythrophleum guineense grown under full sunlight. Comparing with the maximum quan ...
... We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (c ...
... In northern regions, winter wheat (Triticum aestivum L.) accumulates fructan during cold-acclimation in autumn and freeze-acclimation in early winter. The content of fructan in wheat crown tissues is associated with both freezing tolerance and snow mold resistance, and expression levels of fructan synthesis genes in leaf and crown tissue are correlated with both changes and varietal differences in ...
... Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response ...
... Viroids are the smallest plant pathogens consisting of a single stranded circular RNA molecule with a strong secondary structure, lacking a coat protein or any other proteins. The mechanism of viroid pathogenicity has remained unclear. Recent advances in instrumentation and data mining have made it possible to study the effects of various stresses on primary and secondary metabolisms. Here, we hav ...
... Cyclic electron flow (CEF) alleviates PSII photo-inhibition under high light by at least two different mechanisms: one is liked to thermal energy dissipation (qE) and the other one is independent of qE. However, the latter mechanism is unclear. Because the photodamage to PSII primarily occurred at the oxygen-evolving complex (OEC), and the stability of OEC is dependent on proton gradient across th ...
... It is now accepted that plants perceive high-frequency electromagnetic field (HF-EMF). We wondered if the HF-EMF signal is integrated further in planta as a chain of reactions leading to a modification of plant growth. We exposed whole small ligneous plants (rose bush) whose growth could be studied for several weeks. We performed exposures at two different development stages (rooted cuttings beari ...
... Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and X ...
... Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeAD ...
C3 photosynthesis; Plantago media; air; biomass; carbon; carbon dioxide; chlorophyll; chloroplasts; electron transfer; electron transport chain; energy; fluorescence; leaves; photosystem II; roots; tissues; vascular bundles
Abstract:
... Photosynthetic processes in the leaf lamina and midribs of Plantago media were investigated using plants grown in high light (HL) or low light (LL) conditions. The fluorescence parameters, which indicate photochemical/photosynthetic activity, were different in HL and LL grown plants, but no major differences between lamina and midribs were found. An OJIP test (chlorophyll a fluorescence transient ...
... Seed dormancy provides optimum timing for seed germination and subsequent seedling growth, but the mechanism of seed dormancy is still poorly understood. Here, we used Dongxiang wild rice (DXWR) seeds to investigate the dormancy behavior and the differentially changed proteome in embryo and endosperm during dormancy release. DXWR seed dormancy was caused by interaction of embryo and its surroundin ...
... Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid t ...
... Hymenophyllaceae is a desiccation tolerant family of Pteridophytes which are poikilohydric epiphytes. Their fronds are composed by a single layer of cells and lack true mesophyll cells and stomata. Although they are associated with humid and shady environments, their vertical distribution varies along the trunk of the host plant with some species inhabiting the drier sides with a higher irradiance ...
biomass production; carbon dioxide; carbon dioxide fixation; energy; food crops; gas exchange; gene expression; host plants; photochemistry; photosystem II; phytomass; pigments; ribulose-bisphosphate carboxylase; rice; salinity; salt stress; salt tolerance; soil salinity; solar energy; stomatal conductance; vesicular arbuscular mycorrhizae
Abstract:
... Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscu ...
... In their natural environment plants and algae are exposed to rapidly changing light conditions and light intensities. Illumination with high light intensities has the potential to overexcite the photosynthetic pigments and the electron transport chain and thus induce the production of toxic reactive oxygen species (ROS). To prevent damage by the action of ROS, plants and algae have developed a mul ...
... Chlorophyll b (Chlb) is an antenna chlorophyll. The binding of Chlb by antenna proteins is crucial for the correct assembly of the antenna complexes in thylakoid membranes. Since the levels of the proteins of major and minor antenna are affected to different extents by Chlb binding, the availability of Chlb influences the composition and the size of antenna complexes which in turn determine the su ...
DNA damage; acclimation; algae; autotrophs; biological rhythms; blue light; cryptochromes; databases; energy; enzymes; evolution; genome; photoreceptors; plants (botany); stress response
Abstract:
... Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins wi ...
... In this work, we investigate the physiological responses to P deficiency (5μM KH2PO4=D), salt stress (400mM NaCl=C+S), and their combination (D+S) on the facultative halophyte Aeluropus littoralis to understand how plants adapt to these combined stresses. When individually applied, both P deficiency and salinity significantly restricted whole plant growth, with a more marked effect of the latter s ...
Olea europaea; adverse effects; carbon dioxide; chlorophyll; energy; fertilizers; fluorescence; gas exchange; nutrition; oxygen; photoinhibition; photostability; photosystem II; potassium; renewable energy sources; ribulose-bisphosphate carboxylase; sodium; trees
Abstract:
... Potassium (K) is an essential macronutrient shown to play a fundamental role in photosynthetic processes and may facilitate photoinhibition resistance. In some plant species, sodium (Na) can partially substitute for K. Although photosynthetic enhancement has been well established, the mechanisms by which K or Na affects photosynthesis are not fully understood. Olive (Olea europaea L.) trees were p ...
... In the present study the non-photochemical quenching (NPQ) of four biofilm-forming and two planktonic green algae was investigated by fluorescence measurements, determinations of the light-driven proton gradient and determination of the violaxanthin cycle activity by pigment analysis. It was observed that, despite the common need for efficient photoprotection, the structural basis of NPQ was heter ...
... Almost every laboratory dealing with plant physiology, photosynthesis research, remote sensing, and plant phenotyping possesses a fluorometer to measure a kind of chlorophyll (Chl) fluorescence induction (FLI). When the slow Chl FLI is measured with addition of saturating pulses and far-red illumination, the so-called quenching analysis followed by the so-called relaxation analysis in darkness can ...
... Energy consumption and output are two very important standards for evaluating the reliability of electric light sources when plants are grown in a controlled environment. As a primary source of energy, light is one of the most important environmental factors for wheat growth. The objective of this study was to investigate the influences of light/dark cycle operation with millisecond-scale period o ...
... Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response t ...
gas exchange; thermoregulation; light intensity; summer; carbon dioxide; stomatal conductance; fluorescence; fruit set; genotype; Vitis vinifera; photosynthesis; cultivars; vines; energy; leaf water potential; lutein; temperature; catalase; water use efficiency; environmental factors; stomata; chlorophyll
Abstract:
... Photosynthetic performances and energy dissipation mechanisms were evaluated on the anisohydric cv. Sangiovese and on the isohydric cv. Montepulciano (Vitis vinifera L.) under conditions of multiple summer stresses. Potted vines of both cultivars were maintained at 90% and 40% of maximum water availability from fruit-set to veraison. One week before veraison, at predawn and midday, main gas-exchan ...
... Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial haloph ...
... The effect of spermine on proton transport across large unilamellar liposomes containing incorporated complexes of the PSII antenna has been studied with the application of a pH-sensitive dye entrapped inside the vesicles. Both monomeric LHCbs and trimeric LHCII increased the permeability of proteoliposomes to protons when in a partly aggregated state within the lipid membrane. We have previously ...
Peter M. Gresshoff; Satomi Hayashi; Bandana Biswas; Saeid Mirzaei; Arief Indrasumunar; Dugald Reid; Sharon Samuel; Alina Tollenaere; Bethany van Hameren; April Hastwell; Paul Scott; Brett J. Ferguson
... Much of modern agriculture is based on immense populations of genetically identical or near-identical varieties, called cultivars. However, advancement of knowledge, and thus experimental utility, is found through biodiversity, whether naturally-found or induced by the experimenter. Globally we are confronted by ever-growing food and energy challenges. Here we demonstrate how such biodiversity fro ...
... In this study, plantlets of two tobacco (Nicotiana tabacum L.) varieties that are clomazone-tolerant (cv. Xanthi) and clomazone-sensitive (cv. Virginie vk51) were subjected to low concentration of clomazone herbicide. The oxygen-evolving rate of isolated chloroplasts, chlorophyll a fluorescence transients, JIP-test responses, hydrogen peroxide contents, antioxidant enzyme activities, cytohistologi ...
... Water deficit stress promotes excitation pressure and photooxidative damage due to an imbalance between light capture and energy use. Young leaves (YL) of Arabidopsis thaliana plants acclimate better to the onset of water deficit (OnsWD) than do mature leaves (ML). To obtain a better understanding of this differential response, we evaluated whether YL and ML of A. thaliana exposed to the OnsWD, mi ...
Jatropha curcas; Ricinus communis; electrolytes; electron transfer; electron transport chain; energy; leaves; nitrates; photostability; photosynthesis; ribulose-bisphosphate carboxylase; salinity; salt tolerance; sodium
Abstract:
... The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were g ...
... Cold stress affects many plant physiological and biochemical components and induces cascades of alterations in metabolic pathways, amongst them the membrane fatty acid compositions, the activity of antioxidative enzymes and the regulation of gene expression. The present work aimed to characterize the changes of some of these factors in both cold acclimated (CA) and non-acclimated (NA) plants of ch ...
Cylindrospermopsis raciborskii; absorption; acclimation; carbon dioxide; carbon dioxide enrichment; electron transport chain; energy; photosystem II; respiratory rate; toxicity
Abstract:
... We studied the physiological acclimation of growth, photosynthesis and CO2-concentrating mechanism (CCM) in Cylindrospermopsis raciborskii exposed to low (present day; L-CO2) and high (1300ppm; H-CO2) pCO2. Results showed that under H-CO2 the cell specific division rate (μc) was higher and the CO2- and light-saturated photosynthetic rates (Vmax and Pmax) doubled. The cells’ photosynthetic affinity ...
... Extracellular ATP (eATP) plays essential roles in plant growth, development, and stress tolerance. Extracellular ATP-regulated stomatal movement of Arabidopsis thaliana has been reported. Here, ATP was found to promote stomatal opening of Vicia faba in a dose-dependent manner. Three weakly hydrolysable ATP analogs (adenosine 5′-O-(3-thio) triphosphate (ATPγS), 3′-O-(4-benzoyl) benzoyl adenosine 5′ ...
Lawsonia inermis; biomass production; carbon; carbon dioxide; chlorophyll; climate; energy; evaporation; exposure duration; fluorescence; gas exchange; hydroponics; leaves; nutrient solutions; nutrients; photosystem II; root shoot ratio; salinity; salt stress; salt tolerance; sodium; sodium chloride; soil water; soil water deficit; ultrastructure; water use efficiency; water vapor
Abstract:
... Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate condi ...
... Sulphur, as a constituent of amino acids (cysteine and methionine), iron–sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient ...
... Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K+ efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also ...
... Contamination of soil and water by heavy metals has become a widespread problem; environmental pollution by high zinc (Zn) concentration occurs frequently. Although poplar (Populus spp.) has been identified as suitable for phytoremediation approaches, its response to high Zn concentrations are still not clearly understood. For this reason, we investigated the effects of Zn in Populus×euramericana ...
DNA repair; Phaseolus vulgaris; RNA; beans; cell division; cold stress; cold treatment; energy; energy metabolism; germination; oxidative stress; physiological transport; plant hormones; protein degradation; protein metabolism; proteins; proteomics; roots; seeds; signal transduction; stress response; temperature; translation (genetics)
Abstract:
... Plants respond to different environmental cues in a complex way, entailing changes at the cellular and physiological levels. An important step to understand the molecular foundation of stress response in plants is the analysis of stress-responsive proteins. In this work we attempted to investigate and compare changes in the abundance of proteins in the roots of bean (Phaseolus vulgaris L.) germina ...
... During the last decade we showed clearly that abiotic stress changes the cellular composition of polyamines, which in turn regulate the photochemical and non-photochemical quenching of the received light energy in the photosynthetic apparatus and that modulate substantially the level of plant tolerance. In the present contribution, we tried to change the bioenergetics of the leaf discs before the ...
... Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we ...
... It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation durin ...
... Clusia hilariana Schltdl. is described in literature as an obligate Crassulacean acid metabolism (CAM) species. In the present study we assessed the effect of irradiance with low light (LL, 200μmolm−2s−1) and high light (HL, 650–740μmolm−2s−1), on the interdependency of citrate and malate diurnal fluctuations. In plants grown at HL CAM-type oscillations of concentration of citrate and malate were ...
... In the halophytic plant Mesembryanthemum crystallinum salinity or drought can change the mode of photosynthesis from C3 to crassulacean acid metabolism (CAM). These two stress factors are linked to oxidative stress, however, the induction of CAM by oxidative stress per se is not straightforward. Treatment with high light (HL) did not lead to the induction of CAM, as documented by a low night/day d ...
anthocyanins; biogenesis; biosynthesis; color; energy; glycolysis; grapes; heat shock proteins; mass spectrometry; photosynthesis; protein synthesis; proteomics; small fruits; solar radiation; two-dimensional gel electrophoresis
Abstract:
... The most obvious effect of sunlight exclusion from grape clusters is the inhibition of anthocyanin biosynthesis in the berry skin so that no color develops. Two-dimensional gel electrophoresis coupled with mass spectrometry was used to characterize the proteins isolated from berry skins that developed under sunlight exclusion versus those from sunlight-exposed berries. Among more than 1500 spots r ...
Alexander G. Volkov; Shawn L. Harris; Chrystelle L. Vilfranc; Veronica A. Murphy; Joseph D. Wooten; Henoc Paulicin; Maia I. Volkova; Vladislav S. Markin
... Biomechanics of morphing structures in the Venus flytrap has attracted the attention of scientists during the last 140 years. The trap closes in a tenth of a second if a prey touches a trigger hair twice. The driving force of the closing process is most likely due to the elastic curvature energy stored and locked in the leaves, which is caused by a pressure differential between the upper and lower ...
Arabidopsis; barley; chemical treatment; energy; enzymes; etioplasts; oxidation; proteins; seedlings
Abstract:
... NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is the key enzyme in the light-induced greening of higher plants. A unique light-harvesting POR:Pchlide complexes (LHPP) has been found in barley etioplasts, but not in other plant species. Why PORs from barley, but not from other plants, can form LHPP? And its function is not well understood. We modeled the barley and Arabidopsis POR protei ...
... The Venus flytrap is the most famous carnivorous plant. The electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf in 0.3s without mechanical stimulation of trigger hairs. Here we present results for direct measurements of the closing force of the trap of Dionaea muscipula Ellis after mechanical or electrical stimulation of the trap using the piezoelectric thin film or ...
... The scutellum is a shield-shaped structure surrounding the embryo axis in grass species. The scutellar epithelium (Sep) is a monolayer of cells in contact with the endosperm. The Sep plays an important role during seed germination in the secretion of gibberellins and hydrolytic enzymes and in the transport of the hydrolized products to the growing embryo. We identified 30 genes predominantly expre ...
2-deoxyglucose; H-transporting ATP synthase; adenosine triphosphate; chemical inhibitors; electron transfer; energy; gene expression; glucosamine; hexokinase; oxidative phosphorylation; proteins; protons; reporter genes; rice
Abstract:
... Calcineurin B-like (CBL) interacting protein kinase 15 (CIPK15) is a newly identified positive regulator which is critical to directing the O₂ deficiency signal to the sugar signaling cascade as part of Amy3D (representative Amy3 gene) regulation in rice. It is located upstream and probably contributes to reserve mobilization under anoxia. In isolated starving embryos, the temporal pattern of accu ...
Arabidopsis thaliana; acclimation; anthocyanins; antioxidants; energy; leaves; lipid peroxidation; metabolites; photochemistry; photosystem II; proline; sugars; water content; water stress
Abstract:
... The relationships among photosynthetic acclimation, proline (Pro), soluble sugar (SS), and anthocyanin (An) accumulation in Arabidopsis thaliana leaves to the onset of drought stress (OnDS), mild (MiDS) and moderate drought stress (MoDS), were evaluated. As leaf water content (LWC) decreased, metabolic concentrations (Pro, SS, and An) increased and were negatively and significantly correlated with ...
biomimetics; chemical bonding; chemical structure; energy; hydrogen production; photosystem I; solar energy
Abstract:
... Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and fu ...
... In plants, pollen is the male gametophyte that is generated from microspores, which are haploid cells produced after meiosis of diploid pollen mother cells in floral anthers. In normal maturation, microspores interact with the tapetum, which consists of one layer of metabolically active cells enclosing the locule in anthers. The tapetum plays several important roles in the maturation of microspore ...
... The biological clock regulates a wide range of physiological processes in plants. Here we show circadian variation of the Clivia miniata responses to electrical stimulation. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), which regulate its physiology, were analyzed in vivo using the charge stimulation method. The electrostimulation was provided with dif ...
... Photosynthetically active pigments are usually organized into pigment–protein complexes. These include light-harvesting antenna complexes (LHCs) and reaction centers. Site energies of the bound pigments are determined by interactions with their environment, i.e., by pigment–protein as well as pigment–pigment interactions. Thus, resolution of spectral substructures of the pigment–protein complexes ...
absorption; chlorophyll; energy; fluorescence; gas exchange; growth and development; iron; net assimilation rate; nutrients; photosynthesis; plant growth; plant tissues; sweet potatoes; toxicity
Abstract:
... Iron (Fe) is an essential nutrient for plant growth and development. In plant tissues, approximately 80% of Fe is found in photosynthetic cells. This study was carried out to determine the effect of different iron concentrations on the photosynthetic characteristics of sweet potato plants. The fluorescence transient of chlorophyll a (OJIP), chlorophyll index and gas exchange were measured in plant ...
... Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30–40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint. These mutants, which grow s ...
... The widespread use of NO₃ ⁻ fertilization has had a major ecological impact. NH₄ ⁺ nutrition may help to reduce this impact, although high NH₄ ⁺ concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH₄ ⁺ influx/efflux cycle that carries ...
Wieslaw I. Gruszecki; Monika Zubik; Rafal Luchowski; Wojciech Grudzinski; Malgorzata Gospodarek; Janusz Szurkowski; Zygmunt Gryczynski; Ignacy Gryczynski
Fourier transform infrared spectroscopy; antennae; blue light; chlorophyll; energy; fluorescence; heat emissions; light harvesting complex; lighting; red light
Abstract:
... Excitation of the major photosynthetic antenna complex of plants, LHCII, with blue light (470nm) provides an advantage to plants, as it gives rise to chlorophyll a fluorescence lifetimes shorter than with excitation with red light (635nm). This difference is particularly pronounced in fluorescence emission wavelengths longer than 715nm. Illumination of LHCII preparation with blue light additionall ...
ABC transporters; H-transporting ATP synthase; Suaeda; adenosine triphosphate; adenosinetriphosphatase; carbon dioxide; chlorophyll; choline; energy; heat stress; histidine kinase; ion channels; nucleoside-diphosphate kinase; photosystem II; protein subunits; proteome; proteomics; protons; salt stress; signal transduction
Abstract:
... Under natural conditions or in the field, plants are often subjected to a combination of different stresses such as salt stress and heat shock. Although salt stress and heat shock have been extensively studied, little is known about how their combination affects plants. We used proteomics, coupled with physiological measurements, to investigate the effect of salt stress, heat shock, and their comb ...
... Herbicides that inhibit branched chain amino acid biosynthesis induce aerobic fermentation. The role of fermentation in the mode of action of these herbicides is not known, nor is the importance of this physiological response in the growth inhibition and the lethality caused by them. Metabolic profiling was used to compare the effects of the herbicide imazethapyr (IM) on pea plants with two other ...