An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Escherichia coli; Humicola insolens; biodegradation; biotechnology; cutinase; enzymatic treatment; flocculation; forests; peptides; polyesters; product quality; pulp; pulp and paper industry; raw materials; sediments; waste paper; wood
Abstract:
... The paper industry is one of the most important basic raw material pillar industries. With the decrease of forest wood resources, the recycling of wastepaper has drawn increasingly attention. However, the stickies generated in the process of wastepaper recycling will flocculate and deposite in the pulp, resulting in production accidents and inferior product quality. The biological enzymatic method ...
... Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial w ...
Erika de Queiros Eugenio; Ivone Sampaio Pereira Campisano; Ayres Guimarães Dias; Aline Machado de Castro; Maria Alice Zarur Coelho; Marta Antunes Pereira Langone
... Poly(ethylene terephthalate) (PET) is one of the main synthetic plastics produced worldwide. The extensive use of this polymer causes several problems due to its low degradability. In this scenario, biocatalysts dawn as an alternative to enhance PET recycling. The enzymatic hydrolysis of PET results in a mixture of terephthalic acid (TPA), ethylene glycol (EG), mono-(2-hydroxyethyl) terephthalate ...
... BACKGROUND: The global concern of plastic pollution in the environment has consistently been emerging in the past years. As one of the main polymers constituting single‐use products, poly(ethylene terephthalate) (PET) is found in a plethora of packages for diverse sectors, and its recycling has been broadly addressed. However, other relevant industrial PET wastes have not been under investigation ...
... BACKGROUND: Humicola insolens is a filamentous fungus with high potential of producing neutral and heat- and alkali-resistant cellulase. However, the genetic engineering tools, particularly the genome-editing tool, are scarce, hindering the study of cellulase expression regulation in this organism. RESULTS: Herein, a CRISPR/Cas9 genome-editing system was established in H. insolens based on a hybri ...
... In this study, the flexible nanoporous MIL-53(Fe) (MIL = Materials of Institute Lavoisier) was used as an efficient support for in-situ and covalent binding immobilization of Humicola insolens lipase (HIL) and Rhizomucour miehei lipase (RML). In the covalent attachment procedure, the support synthesized under ultrasound irradiation was functionalized by N,N-dicyclohexylcarbodiimide and then attach ...
... The environmental impact arising from poly(ethylene terephthalate) (PET) waste is notable worldwide. Enzymatic PET hydrolysis can provide chemicals that serve as intermediates for value-added product synthesis and savings in the resources. In the present work, some reaction parameters were evaluated on the hydrolysis of post-consumer PET (PC-PET) using a cutinase from Humicola insolens (HiC). The ...
... Humicola insolens feruloyl esterase was immobilized on chemically modified epoxy-activated supports of different pore sizes. Native and immobilized feruloyl esterases were investigated for their esterification activity on raffinose in surfactantless microemulsions. Pectic polysaccharides, obtained from cranberry pomace using chelating agent (CH) and diluted alkaline (DA) extractions, were then est ...
... The enzymatic hydrolysis of barley beta-glucan, konjac glucomannan and carboxymethyl cellulose by a β-1,4-D-endoglucanase MeCel45A from blue mussel, Mytilus edulis, which belongs to subfamily B of glycoside hydrolase family 45 (GH45), was compared with GH45 members of subfamilies A (Humicola insolens HiCel45A), B (Trichoderma reesei TrCel45A) and C (Phanerochaete chrysosporium PcCel45A). Furthermo ...
... The search for a straightforward technology for post-consumer poly(ethylene terephthalate) (PC-PET) degradation is essential to develop a circular economy. In this context, PET hydrolases such as cutinases can be used as bioplatforms for this purpose. Humicola insolens cutinase (HiC) is a promising biocatalyst for PC-PET hydrolysis. Therefore, this work evaluated a kinetic model, and it was observ ...
... Thermophilic fungi have several biotechnological and industrial applications such as thermostable enzyme production, biodegradation, and tobacco processing, etc. Thermophilic fungi cannot survive at temperatures below 20 °C. Owing to their inability to grow at low temperatures, they are not stable, so stocking is very difficult. Although a large number of different storage methods are available an ...
... The specific activity and enantioselectivity of immobilized cutinases from Aspergillus oryzae (AoC) and Humicola insolens (HiC) were compared with those of lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Lipase B from Candida antarctica (CALB) for menthol and its analogs that include isopulegol, trans-2-tert-butylcyclohexanol (2TBC), and dihydrocarveol (DHC). Common feature ...
... Furandioate-adipate copolyesters are an emerging class of bio-based biodegradable polymers with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene adipate-co-terephthalate) (PBAT). Furandioate-adipate polyesters have almost exclusively been prepared with conventional primary (1°) alcohol diols, while secondary (2°) alcohol diol monomers have largel ...
... Feruloyl esterase (FAE)-catalyzed esterification reaction is as a potential route for the biosynthesis of feruloylated oligosaccharides as functional ingredients. Immobilization of FAE from Humicola insolens on metal chelate-epoxy supports was investigated. The study of effects of immobilization parameters using response surface methodology revealed the significance of enzyme/support ratio (3.25-2 ...
... Massive plastics production has raised concerns about low recycling rates and disposal of these materials in nature, causing environmental and economic impacts. Poly(ethylene terephthalate) (PET) is one of main polymers used for manufacture of plastic packaging (e.g. bottles, trays). Enzymatic recycling of PET has been a route of increasing study aiming at to recover its monomers (terephthalic aci ...
... The economical production of pectin oligosaccharides with a specific degree of polymerization and structure from agro-food waste is an industrially important process. This study identified a novel pectate lyase gene (plhy1) from the thermophilic cellulolytic fungus H. insolens Y1 and tested its ability to produce pectin oligosaccharides. The recombinant PLHY1 produced in Pichia pastoris was superi ...
... Previous studies on the hydrolysis of polyacrylates by cutinase have found that cutinase from Humicola insolens can fulfill the requirement for a thermostable cutinase in the treatment of stickies from papermaking, but it has poor hydrolysis ability. To further improve its ability to hydrolyze the polymers in papermaking, we analyzed the structure of cutinase from H. insolens, and constructed thre ...
... Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) by Humicola insolens (HiC) and Thermobifida cellulosilytica (Cut) cutinases is investigated. For the first time, the different depolymerization mechanisms of PBTF (endo-wise scission) and PBF (exo-wise cleavage) has been unveiled and correlated to the chemical structure ...
... Ferulic acid acylation of oligosaccharides catalyzed by feruloyl esterases (FAE) is a promising route to produce feruloylated oligosaccharides. However, modulation of FAE synthetic properties is a key step to improve the acylation. The efficiency of H. insolens FAE to catalyze the feruloylation in six different surfactantless microemulsions reaction systems was evaluated. The highest yield (57%) w ...
... Globular proteins are typically unfolded by SDS to form protein-decorated micelle-like structures. Several proteins have been shown subsequently to refold by addition of the nonionic surfactant octaethylene glycol monododecyl ether (C₁₂E₈). Thus SDS converts β-lactoglobulin, which has mainly β-sheet secondary structure, into a state rich in α-helicality, while addition of C₁₂E₈ leads to refolding ...