An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
M. Iftikhar Hussain; Fabrizio Araniti; Margot Schulz; Scott Baerson; Yedra Vieites-Álvarez; Leonidas Rempelos; Paul Bilsborrow; Nuria Chinchilla; Francisco A. Macías; Leslie A. Weston; Manuel J. Reigosa; Adela M. Sánchez-Moreiras
... Allelopathic activity of wheat (Triticum aestivum L.) has previously been associated with the production of phenolic acids and flavonoids (PAF), benzoxazinones (BXZs) and phenoxazinones (PXZs). The biosynthesis of BXZs is closely regulated during cereal growth, with accumulation highest in young tissues with variation associated with genotype and environmental conditions. This review is focused on ...
... In maize (Zea mays ssp. mays), agriculturally damaging herbivores include lepidopteran insects, such as the European corn borer (Ostrinia nubilalis), and distantly related arthropods, like the two‐spotted spider mite (Tetranychus urticae). A small number of maize lines, including B96 and B75, are highly resistant to both herbivores, and B96 is also resistant to thrips. Using T. urticae as a repres ...
Aleksej Abramov; Thomas Hoffmann; Timo D. Stark; Linlin Zheng; Stefan Lenk; Richard Hammerl; Tobias Lanzl; Corinna Dawid; Chris-Carolin Schön; Wilfried Schwab; Alfons Gierl; Monika Frey
... Plant specialised metabolites constitute a layer of chemical defence. Classes of the defence compounds are often restricted to a certain taxon of plants, e.g. benzoxazinoids (BX) are characteristically detected in grasses. BXs confer wide-range defence by controlling herbivores and microbial pathogens and are allelopathic compounds. In the crops maize, wheat and rye high concentrations of BXs are ...
... Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites that have been identified in multiple grass species and are encoded by the Bx biosynthetic gene cluster (BGC) in maize. Data mining of 41 high-quality grass genomes identified complete Bx clusters (containing genes Bx1–Bx5 and Bx8) in three genera (Zea, Echinochloa, and Dichanthelium) of Panicoideae and partial c ...
... The maize (Zea mays) genome encodes three indole‐3‐glycerolphosphate synthase enzymes (IGPS1, 2, and 3) catalyzing the conversion of 1‐(2‐carboxyphenylamino)‐l‐deoxyribulose‐5‐phosphate to indole‐3‐glycerolphosphate. Three further maize enzymes (BX1, benzoxazinoneless 1; TSA, tryptophan synthase alpha subunit; and IGL, indole glycerolphosphate lyase) convert indole‐3‐glycerolphosphate to indole, w ...
... In order to cope with the presence of unfavorable compounds, plants can biotransform xenobiotics, translocate both parent compounds and metabolites, and perform compartmentation and segregation at the cellular or tissue level. Such a scenario also applies to mycotoxins, fungal secondary metabolites with a pre‐eminent role in plant infection. In this work, we aimed to describe the effect of the int ...
... 2,4‐Dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA) and DIMBOA‐glucoside (DIMBOA‐Glc) are anti‐insect benzoxazinoids in maize, yet very little information is known about how they are regulated. Reverse genetics, kinase activity analysis, phytohormone and DIMBOA/DIMBOA‐Glc quantification, bioassays and transcriptome analysis were employed to study the function of ZmMPK6, a mitogen‐activated prote ...
... Benzoxazinoids (BXs) are specialized metabolites with protective properties that are synthesized predominantly by Poaceae species, including rye (Secale cereale). Among factors known to influence BXs production, prolonged low temperature has not been studied previously. In this study, the influence of cultivation at 4 °C, which is essential for vernalization, on the concentration of BXs (HBOA, DIB ...
... Benzoxazinoids (BXs) are plant secondary metabolites, first discovered in the 1950s, which are synthesized in many monocotyledonous species from the Poaceae family and in several dicotyledonous plants. They constitute a significant element of the plant’s defence mechanism against both biotic (pests and diseases) and abiotic (elevated salinity, heavy metals) stresses. The aim of this research was t ...
... Beneficial rhizobacteria can inhibit foliar pathogen infection by activation of defense responses, yet it the mechanisms of rhizobacteria-induced disease resistance remain largely unknown. Here, inoculation of susceptible maize plants with Pseudomonas fluorescens MZ05 significantly reduced disease occurrence caused by the leaf pathogen Setosphaeria turcica. Gene expression profiles of MZ05-inocula ...
... BACKGROUND: Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an eff ...
... The plant O-methyltransferases are dependent on S-Adenosyl-l-methionine, which can catalyze a variety of secondary metabolites. Here we identified different number of OMT genes from the respective grass genomes. Phylogenetic analysis showed that this OMT gene family is a grass-specific gene family that is different from COMT. Most of genes were expanded by tandem and segment duplication after the ...
... BACKGROUND: Insect herbivory poses a major threat to maize. Benzoxazinoids are important anti-insect secondary metabolites in maize, whose biosynthetic pathway has been extensively studied. However, yet little is known about how benzoxazinoids are regulated in maize, partly due to lack of mutant resources and recalcitrance to genetic transformation. Transient systems based on mesophyll- or culture ...
... BACKGROUND AND AIMS: Although aluminum (Al) exclusion via root exudation of organic matters is a common resistance mechanism adopted by many plant species, whether root exudation of benzoxazinoids, such as hydroxamic acids (HAs), confers Al resistance remains unclear. METHODS: We performed physiological characterization for an Al-resistant maize cultivar TY and a sensitive maize cultivar ZD. RESUL ...
... Wall‐associated kinases (WAKs) have recently been identified as major components of fungal and bacterial disease resistance in several cereal crop species. However, the molecular mechanisms of WAK‐mediated resistance remain largely unknown. Here, we investigated the function of the maize gene ZmWAK‐RLK1 (Htn1) that confers quantitative resistance to northern corn leaf blight (NCLB) caused by the h ...
... To optimize fitness, plants must efficiently allocate their resources between growth and defense. Although phytohormone crosstalk has emerged as a major player in balancing growth and defense, the genetic basis by which plants manage this balance remains elusive. We previously identified a quantitative disease-resistance locus, qRfg2, in maize (Zea mays) that protects against the fungal disease Gi ...
... Benzoxazinoids (BXs) are secondary metabolites present in many Poaceae including the major crops maize, wheat, and rye. In contrast to other potentially toxic secondary metabolites, BXs have not been targets of counter selection during breeding and the effect of BXs on insects, microbes, and neighbouring plants has been recognised. A broad knowledge about the mode of action and metabolisation in t ...
... Benzoxazinoids, comprising the classes of benzoxazinones and benzoxazolinones, are a set of specialised metabolites produced by the plant family Poaceae (formerly Gramineae), and some dicots. The family Poaceae in particular contains several important crops like maize and wheat. Benzoxazinoids play a role in allelopathy and as defence compounds against (micro)biological threats. The effectivity of ...
... Benzoxazinoids are secondary metabolites with plant defense properties and possible health-promoting effects in humans. In this study, the transcriptional activity of ScBx genes (ScBx1-ScBx5; ScBx6-like), involved in benzoxazinoid biosynthesis, was analyzed during germination and early seedling development in rye. Our results showed that ScBx genes had highest levels of expression at 24–30 h after ...
... The Poaceae is a large taxonomic group consisting of approximately 12,000 species and is classified into 12 subfamilies. Gramine and benzoxazinones (Bxs), which are biosynthesized from the tryptophan pathway, are well-known defensive secondary metabolites in the Poaceae. We analyzed the presence or absence of garamine and Bxs in 64 species in the Poaceae by LC-MS/MS. We found that Hordeum brachyan ...