An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
... The high-affinity reductive iron uptake system that includes a ferroxidase (Cfo1) and an iron permease (Cft1) is critical for the pathogenesis of Cryptococcus neoformans. In addition, a mutant lacking CFO1 or CFT1 not only has reduced iron uptake but also displays a markedly increased susceptibility to azole antifungal drugs. Altered antifungal susceptibility of the mutants was of particular inter ...
... BACKGROUND AND AIMS: Although aluminum (Al) exclusion via root exudation of organic matters is a common resistance mechanism adopted by many plant species, whether root exudation of benzoxazinoids, such as hydroxamic acids (HAs), confers Al resistance remains unclear. METHODS: We performed physiological characterization for an Al-resistant maize cultivar TY and a sensitive maize cultivar ZD. RESUL ...
... The increasing bacterial resistance from antibiotic overuse has fostered the search for novel antimicrobial strategies. In particular, bacterial systems involving iron (Fe) uptake are studied to develop new therapeutics against infectious diseases, because iron is crucial for bacterial growth and is a main virulence factor for infection. Iron assimilation is commonly based on the production of sid ...
... Identified through a bioinformatics approach, a nonribosomal peptide synthetase gene cluster in Alcanivorax pacificus encodes the biosynthesis of the new siderophore pacifibactin. The structure of pacifibactin differs markedly from the bioinformatic prediction and contains four bidentate metal chelation sites, atypical for siderophores. Genome mining and structural characterization of pacifibactin ...
... BACKGROUND: Jellyfish collagen was hydrolysed with trypsin and properase E, and jellyfish collagen peptide (JCP) was purified from the enzymatic hydrolysate using ion exchange chromatography and gel filtration. The antioxidant activity of JCP in a linoleic acid emulsion system, its superoxide anion- and hydroxyl radical-scavenging activities and its copper-chelating ability were evaluated in vitro ...
... In Southern China, rice-oil rotations occur on soils with high levels of cadmium (Cd) and low levels of available boron (B). Boron can alleviate Cd toxicity, as it affects the plant cell wall structures and the components that block the entry of Cd into the cytoplasm; however, these mechanisms are not well understood. Fourier transform infrared spectroscopy (FTIR), fluorescent probe dye, electron ...
Lewis acids; Lewis bases; active sites; biosynthesis; chelation; diabetes; genome; hypertension; medicine; metalloproteinases; peptides; thrombosis
Abstract:
... Covering: up to 2019 Inhibitors of proteases and related enzymes have versatile applications in medicine and other areas. They are used in the clinic e.g. for the treatment of cancer, hypertension, thrombosis, diabetes as well as viral and bacterial infections. Most of these drugs are produced synthetically but a substantial part of them has been developed from or are inspired by natural products. ...
... Pectin is a normal constituent of cell walls of green plants. When supplied externally to live cells or walls isolated from the large-celled green alga Chara corallina, pectin removes calcium from load-bearing cross-links in the wall, loosening the structure and allowing it to deform more rapidly under the action of turgor pressure. New Ca2+ enters the vacated positions in the wall and the externa ...
... Agrobacterium sp. ATCC 31749 was previously shown to be an advantageous host for oligosaccharide production. Unexpectedly, the addition of citrate to the oligosaccharide synthesis reaction resulted in up to a sixfold improvement in the production N-aceytl-lactosamine, a disaccharide. The possible mechanisms for this citrate-induced stimulation of oligosaccharide production were investigated, inclu ...
... Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photo-synthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces ...
... With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategies to manage chronic wounds. Pseudomonas aeruginosa has been identified as a principal biofilm-formin ...
... To study the molecular mechanism of the hyperaccumulator plant Phytolacca americana against cadmium (Cd) stress, the leaves of P. americana treated with 400 μM Cd for 0, 2, 12, and 24 h were harvested for comparative transcriptome analysis. In total, 110.07 Gb of clean data were obtained, and 63,957 unigenes were acquired after being assembled. Due to the lack of P. americana genome information, o ...
... Cadmium (Cd) is known as one of the most hazardous elements in the environment and a persistent soil constraint toxic to all flora and fauna. In this study, we conducted physiological, biochemical, and transcriptomic analyses of Nicotiana rustica (N. rustica) and Nicotiana tabacum (N. tabacum) treated with CdCl₂ to know the underlying molecular mechanisms of Cd accumulation. As a result, N. rustic ...
... Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. However, knowledge of the molecular mechanisms, especially the microstructure and global transcriptional profiling, of the symbiosis process under heavy metal contamination is limited. In this study, a heavy metal-tolerant legume, Medicago lupulina, was treated with different concentrations of copper (Cu) ...
... Iron is an essential nutrient that plays a role in bacterial differential gene expression and protein production. Accordingly, the comparative analysis of total lysate and outer membrane fractions isolated from A. baumannii ATCC 19606ᵀ cells cultured under iron-rich and -chelated conditions using 2-D gel electrophoresis-mass spectrometry resulted in the identification of 58 protein spots different ...
... The chelation of Fe2 and Mg2+ ions forms protoheme IX and Mg-protoporphyrin IX, respectively, and the latter is an intermediate in chlorophyll synthesis. Active magnesium protoporphyrin IX chelatase (Mg-chelatase) is an enzyme complex consisting of three different subunits. To investigate the function of the CHL I subunit of Mg-chelatase and the effects of modified Mg-chelatase activity on the tet ...
active sites; biosynthesis; chelation; deuterium; heme; humans; iron; mass spectrometry; protoporphyrin; solvents
Abstract:
... Human ferrochelatase (EC 4.99.1.1) catalyzes the insertion ferrous iron into protoporphyrin IX as the last step in heme biosynthesis, an essential process to most organisms given the vast intracellular functions of heme. Even with multiple ferrochelatase structures available, the exact mechanism for iron insertion into porphyrin is still a matter for debate. It is clear, however, that conformation ...
... BACKGROUND: Rice (Oryza sativa L.) is highly susceptible to iron (Fe) deficiency due to low secretion levels of the mugineic acid (MA) family phytosiderophore (PS) 2′-deoxymugineic acid (DMA) into the rhizosphere. The low levels of DMA secreted by rice have proved challenging to measure and, therefore, the pattern of DMA secretion under Fe deficiency has been less extensively studied relative to o ...
Romão, Célia V.; Ladakis, Dimitrios; Lobo, Susana A.L.; Carrondo, Maria A.; Brindley, Amanda A.; Deery, Evelyne; Matias, Pedro M.; Pickersgill, Richard W.; Saraiva, Lígia M.; Warren, Martin J.
... The class II chelatases associated with heme, siroheme, and cobalamin biosynthesis are structurally related enzymes that insert a specific metal ion (Fe²⁺ or Co²⁺) into the center of a modified tetrapyrrole (protoporphyrin or sirohydrochlorin). The structures of two related class II enzymes, CbiXS from Archaeoglobus fulgidus and CbiK from Salmonella enterica, that are responsible for the insertion ...