Main content area

A controlled sintering process for more permeable ceramic hollow fibre membranes

Wu, Zhentao, Faiz, Rami, Li, Tao, Kingsbury, Benjamin F.K., Li, K.
Journal of membrane science 2013 v.446 pp. 286-293
air, aluminum oxide, artificial membranes, carbon, ceramics, heat treatment, oxygen, polymers, temperature
In this study, a new controlled sintering process has been proposed to improve the water permeation of asymmetric alumina hollow fibre membranes. In this process, polymer binder (PESf) in precursor fibres is purposely pre-treated in static air at selected temperatures (400–600°C) to have it partially removed, prior to be converted into carbon in a second sintering step (1450°C) under an oxygen free environment. During the second sintering step, proper bounding between ceramic particles takes place, while the growth of ceramic grains is effectively suppressed due to the presence of carbon. The carbon in the voids formed by particle packing also acts as a pore structure “stabilizer” and can be removed easily via subsequent thermal treatment in static air at 800°C. Compared to the membranes with the same asymmetric structure and sintered in static air only (i.e. normal sintering), the membranes sintered using the new controlled sintering process shows water permeation flux is approximately 13 times higher, together with comparable mechanical strength. Moreover, this original concept of using the polymer binder to design the pore structure of ceramic membranes can be transferred to other inorganic materials.