PubAg

Main content area

Sphagnum-dwelling Testate Amoebae in Subarctic Bogs are More Sensitive to Soil Warming in the Growing Season than in Winter: the Results of Eight-year Field Climate Manipulations

Author:
Tsyganov, Andrey N., Aerts, Rien, Nijs, Ivan, Cornelissen, Johannes H.C., Beyens, Louis
Source:
Protist 2012 v.163 no.3 pp. 400-414
ISSN:
1434-4610
Subject:
Sphagnum, bogs, climate, climate change, field experimentation, growing season, paleoclimatology, snow, soil, soil heating, species diversity, spring, summer, temperature, winter, Sweden
Abstract:
Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season.
Agid:
1076663