PubAg

Main content area

Dynamic programming approach for segmentation of multivariate time series

Author:
Guo, Hongyue, Liu, Xiaodong, Song, Lixin
Source:
Stochastic environmental research and risk assessment 2015 v.29 no.1 pp. 265-273
ISSN:
1436-3240
Subject:
algorithms, dynamic programming, models, time series analysis
Abstract:
In this paper, dynamic programming (DP) algorithm is applied to automatically segment multivariate time series. The definition and recursive formulation of segment errors of univariate time series are extended to multivariate time series, so that DP algorithm is computationally viable for multivariate time series. The order of autoregression and segmentation are simultaneously determined by Schwarz’s Bayesian information criterion. The segmentation procedure is evaluated with artificially synthesized and hydrometeorological multivariate time series. Synthetic multivariate time series are generated by threshold autoregressive model, and in real-world multivariate time series experiment we propose that besides the regression by constant, autoregression should be taken into account. The experimental studies show that the proposed algorithm performs well.
Agid:
1191158