Main content area

WRF Dynamical Downscaling and Bias Correction Schemes for NCEP Estimated Hydro-Meteorological Variables

Srivastava, Prashant K., Islam, Tanvir, Gupta, Manika, Petropoulos, George, Dai, Qiang
Water resources management 2015 v.29 no.7 pp. 2267-2284
air temperature, algorithms, bias, data collection, dewpoint, evapotranspiration, hydrologic models, linear models, prediction, rain, solar radiation, watersheds, wind speed, England
Rainfall and Reference Evapotranspiration (ETo) are the most fundamental and significant variables in hydrological modelling. However, these variables are generally not available over ungauged catchments. ETo estimation usually needs measurements of weather variables such as wind speed, air temperature, solar radiation and dew point. After the development of reanalysis global datasets such as the National Centre for Environmental Prediction (NCEP) and high performance modelling framework Weather Research and Forecasting (WRF) model, it is now possible to estimate the rainfall and ETo for any coordinates. In this study, the WRF modelling system was employed to downscale the global NCEP reanalysis datasets over the Brue catchment, England, U.K. After downscaling, two statistical bias correction schemes were used, the first was based on sophisticated computing algorithms i.e., Relevance Vector Machine (RVM), while the second was based on the more simple Generalized Linear Model (GLM). The statistical performance indices for bias correction such as %Bias, index of agreement (d), Root Mean Square Error (RMSE), and Correlation (r) indicated that the RVM model, on the whole, displayed a more accomplished bias correction of the variability of rainfall and ETo in comparison to the GLM. The study provides important information on the performance of WRF derived hydro-meteorological variables using NCEP global reanalysis datasets and statistical bias correction schemes which can be used in numerous hydro-meteorological applications.