U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Use of Fluorescence, a Novel Technique to Determine Reduction in Bemisia tabaci (Hemiptera: Aleyrodidae) Nymph Feeding When Exposed to Benevia and Other Insecticides

Author:
Cameron Rachel, Lang Edward B., Annan I. Billy, Portillo Hector E., Alvarez Juan M.
Source:
Journal of economic entomology 2013 v.106 no.2 pp. 597-603
ISSN:
0022-0493
Subject:
Bemisia tabaci, cotton, cyantraniliprole, death, fluorescein, fluorescence, growers, imidacloprid, insects, laboratory experimentation, leaves, mechanism of action, mortality, nymphs, pests, root systems, roots, sooty molds, viruses, xylem, United States
Abstract:
The sweet potato whitefly, Bemisia tabaci (Gennadius), is an economically important pest in the United States and other countries. Growers in many places rely on the use of insecticides to reduce populations of B. tabaci. However, insecticides may take a few days to cause B. tabaci mortality and some do not reduce feeding before death. Earlier reduction of feeding of whiteflies would decrease the physiological effects on plants, reduce the production of sooty mold and potentially reduce the transmission of viruses. Measuring the reduction in feeding after the exposure of B. tabaci to an insecticide has proven difficult. This series of laboratory experiments demonstrate the usefulness of fluorescence in determining B. tabaci feeding cessation. Fluorescein sodium salt is systemically transported in the xylem from the roots to the plant leaves and absorbed by B. tabaci nymphs feeding on these plants. Nymphs start fluorescing shortly after the cotton plant root system is submerged in the fluorescein sodium salt. Using this novel technique, the effect of three insecticides with different modes of action, cyantraniliprole, imidacloprid, and spirotetramat on B. tabaci was evaluated and compared to determine reduction in feeding. Results indicate that B. tabaci nymphs feeding on a plant treated with Benevia have a significant reduction of feeding when compared with nymphs feeding on plants treated with imidacloprid or spirotetramat. Both Benevia and spirotetramat caused significant nymphal mortality by 48 h after exposure. This novel technique will be useful to demonstrate the feeding cessation or reduction in feeding produced by different insecticides in several sucking insect groups.
Agid:
1265514