PubAg

Main content area

The C2 Domain Protein Cts1 Functions in the Calcineurin Signaling Circuit during High-Temperature Stress Responses in Cryptococcus neoformans

Author:
Aboobakar, Eanas F., Wang, Xuying, Heitman, Joseph, Kozubowski, Lukasz
Source:
Eukaryotic cell 2011 v.10 no.12 pp. 1714-1723
ISSN:
1535-9778
Subject:
Cryptococcus neoformans, alkaline phosphatase, calves, cytokinesis, electrophoresis, fungi, humans, messenger RNA, molecular weight, mutants, mutation, pathogens, phosphoprotein phosphatase, protein subunits, stress response, thermal stress, virulence
Abstract:
Calcineurin is a conserved calcium/calmodulin-dependent serine/threonine-specific protein phosphatase that acts in cell stress responses. Calcineurin is essential for growth at 37°C and for virulence of the human fungal pathogen Cryptococcus neoformans, but its substrates remain unknown. The C2 domain-containing, phospholipid-binding protein Cts1 was previously identified as a multicopy suppressor of a calcineurin mutation in C. neoformans. Here we further characterize the function of Cts1 and the links between Cts1 and calcineurin. GFP-Cts1 localizes to cytoplasmic puncta and colocalizes with the endosomal marker FM4-64. The cts1Δ mutant shows a distinct FM4-64 staining pattern, suggesting involvement of Cts1 in endocytic trafficking. In large budded cells, GFP-Cts1 localizes transiently at the mother bud neck, as a single ring that undergoes contraction. mCherry-Cts1 colocalizes with the GFP-tagged calcineurin catalytic subunit Cna1 at sites of mRNA processing at 37°C, suggesting that Cts1 and calcineurin function coordinately during thermal stress. GFP-Cts1 exhibits slower electrophoretic mobility for cells grown at 37°C than for cells grown at 24°C, and the shift to a higher molecular weight is more pronounced in the presence of the calcineurin inhibitor FK506. In vitro treatment with calf intestinal alkaline phosphatase (CIP) restores faster electrophoretic mobility to GFP-Cts1, suggesting that Cts1 is phosphorylated at 37°C and may be dephosphorylated in a calcineurin-dependent manner. mCherry-Cts1 also coimmunoprecipitates with GFP-Cna1, with greater complex formation at 37°C than at 24°C. Taken together, these findings support potential roles for Cts1 in endocytic trafficking, mRNA processing, and cytokinesis and suggest that Cts1 is a substrate of calcineurin during high-temperature stress responses.
Agid:
128191