Main content area

In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed

Chaveerach, P., Keuzenkamp, D.A., Urlings, H.A.P., Lipman, L.J.A., Knapen, F. van.
Poultry science 2002 v.81 no.5 pp. 621-628
broiler chickens, drinking water, acidification, formic acid, acetic acid, propionic acid, hydrochloric acid, pH, feed formulation, antibacterial properties, foodborne illness, Campylobacter jejuni, Campylobacter coli, strain differences, plate count, transmission electron microscopy
Gastroenteritis caused by Campylobacter spp. infection has been recognized as one of the important public health problems in the developed countries. Outbreaks mostly originate from the consumption of contaminated poultry or infected water. The aim of this study was to determine the bactericidal activity on Campylobacter spp. of organic acids individually and in combinations at different pH levels and times and to compare bactericidal activities with activities of commercially available products. Ten strains of Campylobacter spp. were added in a mixture of water with commercial broiler feed, separately adjusted by four acids: formic, acetic, propionic, and hydrochloric acids, into pH 4.0, 4.5, 5.0, and 5.5. A combination of three organic acids was used in two different formulation ratios: formic:acetic:propionic at 1:2:3 and 1:2:5, at pH 4.0, 4.5, 5.0, and 5.5. All organic acids showed the strongest bactericidal effect on Campylobacter at pH 4.0. In contrast, at pH 5.0 and 5.5, the bactericidal activity of the four acids was low. The combination of organic acids showed a synergistic bactericidal activity at pH 4.5. Interestingly, the effect of the combined organic acids was stronger than the commercial products. Morphological cell changes were studied by transmission electron microscopy to determine the effect of the organic acids on the cell structure of Campylobacter. Some loss of outer membranes of the bacteria could be found in treated groups. Therefore, it can be concluded that organic acids, individually or in combination, have a strong bactericidal effect on Campylobacter spp. Routine application of organic acids to the water supply on poultry farms could prevent or diminish Campylobacter transmission.