Main content area

Effect of different washing procedures on phenolic metabolism of shredded, packaged iceberg lettuce during storage

Baur, S., Klaiber, R.G., Koblo, A., Carle, R.
Journal of agricultural and food chemistry 2004 v.52 no.23 pp. 7017-7025
head lettuce, phenolic compounds, metabolism, postharvest physiology, enzyme activity, peroxidase, phenylalanine ammonia-lyase, catechol oxidase, fresh-cut foods, food storage, washing, tap water, chlorination, ozonation, food packaging
Different washing treatments applying chlorinated, ozonated, and tap water were examined for their effect on the phenolic metabolism of minimally processed iceberg lettuce (Lactuca sativa L.) during storage in consumer-sized bags at 4 degrees C for up to 9 days. To eliminate problems associated with raw material inhomogeneity, processing was conducted on a pilot-plant scale under operating conditions of industrial practice. Inherent product heterogeneity caused by diverse lettuce leaf tissues was compensated for by pooling large-sized samples, and frequent sampling ensured significant data about the activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD), as well as the contents of caffeic acid derivatives over storage time. In the homogeneous lettuce samples, specific responses caused by different washing procedures were detectable. PAL activity in the samples increased for up to 5-8 days of storage. Compared to tap and ozonated water, the use of chlorinated water (100-200 mg/L free chlorine) for washing trimmed heads or shredded lettuce significantly reduced PAL activity and the concomitant rise of 3,5-di-O-caffeoylquinic acid (isochlorogenic acid isomer) concentrations. The phenolic acids O-caffeoyltartaric (caftaric acid), di-O-caffeoyltartaric (chicoric acid), 5-O-caffeoylquinic (chlorogenic acid isomer), and O-caffeoylmalic were less influenced by different washing treatments. Individual contents either were constant or decreased during storage. Additionally, the novel finding of a further caffeic acid isomer, tentatively identified as meso-di-O-caffeoyltartaric acid, is reported. PPO and POD activities were less affected by different washing treatments and thus were less suitable physiological indicators of stress reactions triggered by alternative processing.