Main content area

Spray-dried Bacilus thuringiensis serovar israelensis formulations for control of Aedes aegypti larvae

Ramirez-Suero, M., Robles-Olvera, V., Ramirez-Lepe, M.
Journal of economic entomology 2005 v.98 no.5 pp. 1494-1498
Aedes aegypti, Bacillus thuringiensis subsp. israelensis, pesticide formulations, spray drying, bacterial spores, delta-endotoxins, larvae, dose response, lethal dose 50, mortality, biological control agents, mosquito control
Suspensions containing 0.25 and 1.25 g/liter of Bacillus thuringiensis subsp. israelensis (Bti) spore-toxin complex were spray-dried by using maltodextrin DE-6, corn starch, and nixtamalized corn flour (25 g/liter) as materials to entrap active delta-endotoxin. The inlet air temperature of the drier was kept constant at 141 degrees C and the outlet temperature was maintained at 60 or 70 degrees C. The Probit analysis of the concentration-mortality response of third instars of Aedes aegypti (L.) larvae of the spray-dried products at 60 degrees C showed that LC50 values for maltodextrin DE-6 with 1 and 5% spore-toxin complex were 4 and 10% higher in toxicity, respectively, than that for the unformulated spore-toxin complex without drying. The LC50 value for corn starch with 1 and 5% of spore-toxin complex were also higher in toxicity (7 and 8% respectively). However, LC50 values for nixtamalized corn flour with one and 5% spore-toxin complex were 81 and 55% higher in toxicity, respectively. Dried products contain an a(w) less than or equal to 0.7, suggesting that they are able to keep the products without microorganism growth for longer periods. The scanning electron microscope of Bti spray-dried formulations with nixtamalized corn flour showed smooth spherical particles entrapping the active ingredient. These results suggested that Bti spore-toxin complex formulated with maltodextrin DE-6, corn flour, and nixtamalized corn flour, and then spray-dried may increase larval feeding and thus increase activity against Ae. aegypti larvae.