Main content area

Characterization and Molecular Mapping of Genes Determining Semidwarfism in Barley

Dahleen, L. S., Vander Wal, L. J., Franckowiak, J. D.
Journal of heredity 2005 v.96 no.6 pp. 654-662
Hordeum vulgare, barley, genes, dwarfing, mutants, agronomic traits, allelism, chromosome mapping, genetic markers, microsatellite repeats, height, grain yield, loci
The semidwarf trait is desired in cereal breeding programs for increased lodging resistance. We characterized 27 brachytic (brh) semidwarf mutants in barley (Hordeum vulgare L.) and located the genes on barley chromosome linkage maps. All brachytic genes were transferred into the two-rowed cultivar Bowman by backcrossing four to seven times and selecting for semidwarf plants. The brachytic lines were evaluated for 10 phenotypic traits: plant height, awn, peduncle, and rachis internode length, leaf length and width, lodging, grain yield, number of kernels per spike, and kernel weight. We intercrossed the lines to determine which mutants were at independent loci and which were alleles at the same locus. F₂ populations from 18 brh semidwarfs were constructed for genetic mapping using simple sequence repeat (SSR) markers. The brachytic semidwarf near-isogenic lines were significantly shorter than their normal counterparts and most had lower yields (16/27); shorter awns (26/27), peduncles (26/27), and rachis internodes (24/27); and reduced kernel weight (22/27). Twelve of the lines had shorter penultimate leaves and 15 had reduced lodging. Four lines had increased kernels per spike, while one had fewer kernels per spike. Allelism tests and mapping comparisons indicated that the 27 semidwarfs comprise 18 independent genetic loci. SSR mapping placed these loci in five of the seven barley chromosomes. Knowledge of the effects and locations of these brachytic semidwarf genes will help barley breeders select appropriate lines for barley improvement.