Main content area

Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis

Freundl, E., Steudle, E., Hartung, W.
Planta 2000 v.210 no.2 pp. 222-231
Zea mays, abscisic acid, cell walls, active transport, roots, root hydraulic conductivity, water, xylem, hydroponics, filtration, sap, solutes
The exodermal layers that are formed in maize roots during aeroponic culture were investigated with respect to the radial transport of cis-abscisic acid (ABA). The decrease in root hydraulic conductivity (Lp(r)) of aeroponically grown roots was stimulated 1.5-fold by ABA (500 nM), reaching LP(r) values of roots lacking an exodermis. Similar to water, the radial flow of ABA through roots (J(ABA)) and ABA uptake into root tissue were reduced by a factor of about three as a result of the existence of an exodermis. Thus, due to the cooperation between water and solute transport the development of the ABA signal in the xylem was not affected. This resulted in unchanged reflection coefficients for roots grown hydroponically and aeroponically. Despite the well-accepted barrier properties of exodermal layers, it is concluded that the endodermis was the more effective filter for ABA. Owing to concentration polarisation effects, ABA may accumulate in front of the endodermal layer, a process which, for both roots possessing and lacking an exodermis, would tend to increase solvent drag and hence ABA movement into the xylem sap at increased water flow (J(Vr)). This may account for the higher ABA concentrations found in the xylem at greater pressure difference.