Main content area

Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium

Omsland, Anders, Sager, Janet, Nair, Vinod, Sturdevant, Daniel E., Hackstadt, Ted
Proceedings of the National Academy of Sciences of the United States of America 2012 v.109 no.48 pp. 19781-19785
Chlamydia trachomatis, adenosine triphosphate, amino acids, axenic culture, energy, glucose 6-phosphate, humans, isotope labeling, pathogens, proteins, transcription (genetics)
Chlamydia trachomatis is among the most clinically significant human pathogens, yet their obligate intracellular nature places severe restrictions upon research. Chlamydiae undergo a biphasic developmental cycle characterized by an infectious cell type known as an elementary body (EB) and an intracellular replicative form called a reticulate body (RB). EBs have historically been described as metabolically dormant. A cell-free (axenic) culture system was developed, which showed high levels of metabolic and biosynthetic activity from both EBs and RBs, although the requirements differed for each. EBs preferentially used glucose-6-phosphate as an energy source, whereas RBs required ATP. Both developmental forms showed increased activity when incubated under microaerobic conditions. Incorporation of isotopically labeled amino acids into proteins from both developmental forms indicated unique expression profiles, which were confirmed by genome-wide transcriptional analysis. The described axenic culture system will greatly enhance biochemical and physiological analyses of chlamydiae.