PubAg

Main content area

Convex lens-induced nanoscale templating

Author:
Berard, Daniel J., Michaud, François, Mahshid, Sara, Ahamed, Mohammed Jalal, McFaul, Christopher M. J., Leith, Jason S., Bérubé, Pierre, Sladek, Rob, Reisner, Walter, Leslie, Sabrina R.
Source:
Proceedings of the National Academy of Sciences of the United States of America 2014 v.111 no.37 pp. 13295-13300
ISSN:
0027-8424
Subject:
DNA, buffers, electric field, genome
Abstract:
Significance Convex lens-induced nanoscale templating (CLINT) represents a conceptual breakthrough in nanofluidic technology for single-molecule manipulation. CLINT solves a key challenge faced by the nanofluidics field by bridging the multiple-length scales required to efficiently bring single-molecule analytes from the pipette tip to the nanofluidic channel. To do this, CLINT loads single-molecule analytes into embedded nanofeatures via dynamic control of applied vertical confinement, which we have demonstrated by loading and extending DNA within nanochannels. CLINT offers unique advantages in single-molecule DNA mapping by facilitating surface passivation, increasing loading efficiency, obviating the need for applied pressure or electric fields, and enhancing compatibility with physiological buffers and long DNA molecules extracted from complex genomes.
Agid:
1787165