PubAg

Main content area

Experimental validation of metabolic pathway modeling

Author:
Moreno-Sánchez, Rafael, Encalada, Rusely, Marín-Hernández, Alvaro, Saavedra, Emma
Source:
FEBS journal 2008 v.275 no.13 pp. 3454-3469
ISSN:
1742-464X
Subject:
Entamoeba histolytica, adenosine triphosphate, biochemical pathways, drugs, enzyme kinetics, equations, fructose-bisphosphate aldolase, glycolysis, hexokinase, humans, metabolites, models, pH, parasites, phosphates, phosphofructokinases, phosphopyruvate hydratase, pyruvate kinase, pyruvic acid, temperature, triose-phosphate isomerase
Abstract:
In the search for new drug targets in the human parasite Entamoeba histolytica, metabolic control analysis was applied to determine, experimentally, flux control distribution of amebal glycolysis. The first (hexokinase, hexose-6-phosphate isomerase, pyrophosphate-dependent phosphofructokinase (PPi-PFK), aldolase and triose-phosphate isomerase) and final (3-phosphoglycerate mutase, enolase and pyruvate phosphate dikinase) glycolytic segments were reconstituted in vitro with recombinant enzymes under near-physiological conditions of pH, temperature and enzyme proportion. Flux control was determined by titrating flux with each enzyme component. In parallel, both glycolytic segments were also modeled by using the rate equations and kinetic parameters previously determined. Because the flux control distribution predicted by modeling and that determined by reconstitution were not similar, kinetic interactions among all the reconstituted components were experimentally revised to unravel the causes of the discrepancy. For the final segment, it was found that 3-phosphoglycerate was a weakly competitive inhibitor of enolase, whereas PPi was a moderate inhibitor of 3-phosphoglycerate mutase and enolase. For the first segment, PPi was both a strong inhibitor of aldolase and a nonessential mixed-type activator of amebal hexokinase; in addition, lower Vmax values for hexose-6-phosphate isomerase, PPi-PFK and aldolase were induced by PPi or ATP inhibition. It should be noted that PPi and other metabolites were absent from the 3-phosphoglycerate mutase and enolase or aldolase and hexokinase kinetics experiments, but present in reconstitution experiments. Only by incorporating these modifications in the rate equations, modeling predicted values of flux control distribution, flux rate and metabolite concentrations similar to those experimentally determined. The experimentally validated segment models allowed 'in silico experimentation' to be carried out, which is not easy to achieve in in vivo or in vitro systems. The results predicted a nonsignificant effect on flux rate and flux control distribution by adding parallel routes (pyruvate kinase for the final segment and ATP-dependent PFK for the first segment), because of the much lower activity of these enzymes in the ameba. Furthermore, modeling predicted full flux-control by 3-phosphoglycerate mutase and hexokinase, in the presence of low physiological substrate and product concentrations. It is concluded that the combination of in vitro pathway reconstitution with modeling and enzyme kinetics experimentation permits a more comprehensive understanding of the pathway behavior and control properties.
Agid:
2052625