Main content area

Genetic Diversity Estimates for the Genus Hydrangea and Development of a Molecular Key Based on SSR

Rinehart, T.A., Scheffler, B.E., Reed, S.M.
Journal of the American Society for Horticultural Science 2006 v.131 no.6 pp. 787
Hydrangea, ornamental plants, nursery crops, genetic variation, microsatellite repeats, molecular systematics, genetic markers, taxonomic keys, plant taxonomy, codominance, loci, Hydrangeaceae, genetic distance, gene flow, wide hybridization, alleles, interspecific hybridization, taxonomy
Using 14 codominant microsatellite markers that amplify loci across 14 different Hydrangea L. species, we analyzed gene diversity and genetic similarity within Hydrangea. Samples also included Dichroa Lour., Platycrater Sieb. and Zucc., and Schizophragma Sieb. and Zucc. genera to establish their relatedness to Hydrangea species since previous work suggests they may be closely related. Our results support the close affiliation between Macrophyllae E.M. McClint. and Petalanthe (Maxim.) Rehder subsections and their separation from the other Hydrangea species. Most of the Hydrangea species analyzed cluster within their designated sections and subsections; however, genetic distance between species within each subsection varied considerably. Our data suggest that morphological analyses which labeled H. serrata (Thunb.) Ser. as a subspecies of H. macrophylla (Thunb. Ex J.A. Murr.) Ser. are probably more accurate than recent genome size data suggesting H. macrophylla ssp. macrophylla (Thunb.) Ser. and H. macrophylla ssp. serrata (Thunb.) Makino are separate species. Gene diversity estimates indicate that 64.7% of the total diversity is due to differences between species and 49.7% of the overall variation is due to differences between subsections. Low diversity suggests a lack of gene flow between species and subsections and underscores the difficulty in making wide hybrids. Since only 35.3% of the genetic variation is common to all species, unique alleles were used to develop a molecular key for unambiguous species identification and interspecific hybrid verification. Genetic similarity estimates for all 85 samples suggests a roadmap for introgressing horticulturally important traits from different Hydrangea species.