Main content area

Assessing the accuracy of species distribution models to predict amphibian species richness patterns

Pineda, Eduardo, Lobo, Jorge M.
Journal of animal ecology 2009 v.78 no.1 pp. 182-190
amphibians, biogeography, environmental factors, model validation, models, prediction, species diversity, uncertainty, Mexico
1. Evaluating the distribution of species richness where biodiversity is high but has been insufficiently sampled is not an easy task. Species distribution modelling has become a useful approach for predicting their ranges, based on the relationships between species records and environmental variables. Overlapping predictions of individual distributions could be a useful strategy for obtaining estimates of species richness and composition in a region, but these estimates should be evaluated using a proper validation process, which compares the predicted richness values and composition with accurate data from independent sources. 2. In this study, we propose a simple approach to estimate model performance for several distributional predictions generated simultaneously. This approach is particularly suitable when species distribution modelling techniques that require only presence data are used. 3. The individual distributions for the 370 known amphibian species of Mexico were predicted using maxent to model data on their known presence (66 113 presence-only records). Distributions were subsequently overlapped to obtain a prediction of species richness. Accuracy was assessed by comparing the overall species richness values predicted for the region with observed and predicted values from 118 well-surveyed sites, each with an area of c. 100 km², which were identified using species accumulation curves and nonparametric estimators. 4. The derived models revealed a remarkable heterogeneity of species richness across the country, provided information about species composition per site and allowed us to obtain a measure of the spatial distribution of prediction errors. Examining the magnitude and location of model inaccuracies, as well as separately assessing errors of both commission and omission, highlights the inaccuracy of the predictions of species distribution models and the need to provide measures of uncertainty along with the model results. 5. The combination of a species distribution modelling method like maxent and species richness estimators offers a useful tool for identifying when the overall pattern provided by all model predictions might be representing the geographical patterns of species richness and composition, regardless of the particular quality or accuracy of the predictions for each individual species.