PubAg

Main content area

Cost-benefit analysis of using sewage sludge as alternative fuel in a cement plant: a case study

Author:
Nadal, Martí, Schuhmacher, Marta, Domingo, José L.
Source:
Environmental science and pollution research international 2009 v.16 no.3 pp. 322-328
ISSN:
0944-1344
Subject:
absorption, air, alternative fuels, arsenic, breathing, cadmium, carbon dioxide, case studies, cement, chromium, cobalt, cost benefit analysis, dibenzofuran, ecosystem services, energy, energy industry, environmental exposure, greenhouse gas emissions, greenhouse gases, human health, kilns, market prices, methane, neoplasms, nitrous oxide, people, pollutants, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, risk, sewage sludge, soil, trade, Spain
Abstract:
Background, aim, and scope To enforce the implementation of the Kyoto Protocol targets, a number of governmental/international institutions have launched emission trade schemes as an approach to specify CO₂ caps and to regulate the emission trade in recent years. These schemes have been basically applied for large industrial sectors, including energy producers and energy-intensive users. Among them, cement plants are included among the big greenhouse gas (GHG) emitters. The use of waste as secondary fuel in clinker kilns is currently an intensive practice worldwide. However, people living in the vicinity of cement plants, where alternative fuels are being used, are frequently concerned about the potential increase in health risks. In the present study, a cost-benefit analysis was applied after substituting classical fuel for sewage sludge as an alternative fuel in a clinker kiln in Catalonia, Spain. Materials and methods The economical benefits resulting in the reduction of CO₂ emissions were compared with the changes in human health risks due to exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and carcinogenic metals (As, Cd, Co, and Cr) before and after using sewage sludge to generate 20% of the thermal energy needed for pyro-processing. The exposure to PCDD/Fs and metals through air inhalation, soil ingestion and dermal absorption was calculated according to the environmental levels in soil. The carcinogenic risks were assessed, and the associated cost for the population was estimated by considering the DG Environment's recommended value for preventing a statistical fatality (VPF). In turn, the amount of CO₂ emitted was calculated, and the economical saving, according to the market prices, was evaluated. Results The use of sewage sludge as a substitute of conventional energy meant a probability cancer decrease of 4.60 for metals and a cancer risk increase of 0.04 for PCDD/Fs. Overall, a net reduction of 4.56 cancers for one million people can be estimated. The associated economical evaluation due to the decreasing cancer for 60,000 people, the current population living near the cement plant, would be of 0.56 million euros (US$ 0.83 million). In turn, a reduction of 144,000 tons of CO₂ emitted between 2003 and 2006 was estimated. Considering a cost of 20 euros per ton of CO₂, the global saving would be 2.88 million euros (US$ 4.26 million). Discussion After the partial substitution of the fuel, the current environmental exposure to metals and PCDD/Fs would even mean a potential decrease of health risks for the individuals living in the vicinity of the cement plant. The total benefit of using sewage sludge as an alternative fuel was calculated in 3.44 million euros (US$ 5.09 million). Environmental economics is becoming an interesting research field to convert environmental benefits (i.e., reduction of health risks, emission of pollutants, etc.) into economical value. Conclusions The results show, that while the use of sewage sludge as secondary fuel is beneficial for the reduction in GHG emissions, no additional health risks for the population derived from PCDD/F and metal emissions are estimated. Recommendations and perspectives Cost-benefit analysis seems to be a suitable tool to estimate the environmental damage and benefit associated to industrial processes. Therefore, this should become a generalized practice, mainly for those more impacting sectors such as power industries. On the other hand, the extension of the study could vastly be enlarged by taking into account other potentially emitted GHGs, such as CH₄ and N₂O, as well as other carcinogenic and non-carcinogenic micropollutants.
Agid:
2177620