Main content area

Ecological patterns and genetic analysis of post-dispersal seed predation in sunflower (Helianthus annuus) crop-wild hybrids

Dechaine, Jennifer M., Burger, Jutta C., Burke, John M.
Molecular ecology 2010 v.19 no.16 pp. 3477-3488
Helianthus annuus, alleles, cultivars, energy, genetic techniques and protocols, hybridization, hybrids, linkage groups, lipid content, oils, parents, quantitative trait loci, seed predation, seeds, species recruitment
Crop-wild hybridization has been documented in many cultivated species, but the ecological and genetic factors that influence the likelihood or rate that cultivar alleles will introgress into wild populations are poorly understood. Seed predation is one factor that could mitigate the spread of otherwise advantageous cultivar alleles into the wild by reducing seedling recruitment of crop-like individuals in hybrid populations. Seed predation has previously been linked to several seed characters that differ between cultivated and wild sunflower, such as seed size and oil content. In this study, seed morphological and nutritional characters were measured in a segregating population of sunflower crop-wild hybrids and wild and cultivated lines. Seed predation rates among lines were then assessed in the field. The relationship between seed predation and seed characters was investigated and quantitative trait loci (QTL) were mapped for all traits. There was no effect of seed type (hybrid vs. parents) on seed predation, although a trend toward more early predation of wild seeds was observed. Within the hybrids, seed predators preferred seeds that contained more oil and energy but were lower in fibre. The relationship between seed predation and oil content was supported by co-localized QTL for these traits on one linkage group. These results suggest that oil content may be a more important determinant of seed predation than seed size and provide molecular genetic evidence for this relationship. The cultivar allele was also found to increase predation at all QTL, indicating that post-dispersal seed predation may mitigate the spread of cultivar alleles into wild populations.