PubAg

Main content area

Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms

Author:
Ting, Jonathan T., Kelley, Brooke G., Lambert, Talley J., Cook, David G., Sullivan, Jane M.
Source:
Proceedings of the National Academy of Sciences of the United States of America 2007 v.104 no.1 pp. 353-358
ISSN:
0027-8424
Subject:
Alzheimer disease, amyloid, cell death, image analysis, immunocytochemistry, mutants, neurons
Abstract:
Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transmission in cultured hippocampal autapses; and we perform whole-cell recording, FM imaging, and immunocytochemistry to identify the specific mechanisms accounting for this depression. We find that APP overexpression leads to postsynaptic silencing through a selective reduction of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents. This effect is likely mediated by Aβ because expression of mutant APP incapable of producing Aβ did not depress transmission. In addition, although we eliminate presynaptic silencing as a mechanism underlying APP-mediated inhibition of transmission, we did observe an Aβ-induced presynaptic deficit in vesicle recycling with sustained stimulation. These findings demonstrate that APP elevation disrupts both presynaptic and postsynaptic compartments.
Agid:
2351248