Main content area

Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium

Tomo, Tatsuya, Okubo, Tatsunori, Akimoto, Seiji, Yokono, Makio, Miyashita, Hideaki, Tsuchiya, Tohru, Noguchi, Takumi, Mimuro, Mamoru
Proceedings of the National Academy of Sciences of the United States of America 2007 v.104 no.17 pp. 7283-7288
polypeptides, chlorophyll, D2 protein, electron transfer, D1 protein, photosystem II, Fourier transform infrared spectroscopy, cytochrome b, Cyanobacteria
The composition of photosystem II (PSII) in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017 was investigated to enhance the general understanding of the energetics of the PSII reaction center. We first purified photochemically active complexes consisting of a 47-kDa Chl protein (CP47), CP43' (PcbC), D1, D2, cytochrome b₅₅₉, PsbI, and a small polypeptide. The pigment composition per two pheophytin (Phe) a molecules was 55 ± 7 Chl d, 3.0 ± 0.4 Chl a, 17 ± 3 α-carotene, and 1.4 ± 0.2 plastoquinone-9. The special pair was detected by a reversible absorption change at 713 nm (P713) together with a cation radical band at 842 nm. FTIR difference spectra of the specific bands of a 3-formyl group allowed assignment of the special pair. The combined results indicate that the special pair comprises a Chl d homodimer. The primary electron acceptor was shown by photoaccumulation to be Phe a, and its potential was shifted to a higher value than that in the Chl a/Phe a system. The overall energetics of PSII in the Chl d system are adjusted to changes in the redox potentials, with P713 as the special pair using a lower light energy at 713 nm. Taking into account the reported downward shift in the potential of the special pair of photosystem I (P740) in A. marina, our findings lend support to the idea that changes in photosynthetic pigments combine with a modification of the redox potentials of electron transfer components to give rise to an energetic adjustment of the total reaction system.