Main content area

Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis

Oppenheimer, D.G., Pollock, M.A., Vacik, J., Szymanski, D.B., Ericson, B., Feldmann, K., Marks, M.D.
Proceedings of the National Academy of Sciences of the United States of America 1997 v.94 no.12 pp. 6261-6266
Arabidopsis thaliana, structural genes, plant proteins, calmodulin, binding proteins, nucleotide sequences, introns, amino acid sequences, trichomes, morphogenesis, chromosome mapping, loci, alleles, gene expression, messenger RNA
Little is known about how cell shape is controlled. We are using the morphogenesis of trichomes (plant hairs) on the plant Arabidopsis thaliana as a model to study how cell shape is controlled. Wild-type Arabidopsis trichomes are large, single epidermal cells with a stalk and three or four branches, whereas in zwichel (zwi) mutants the trichomes have a shortened stalk and only two branches. To further understand the role of the ZWI gene in trichome morphogenesis we have cloned the wild-type ZWICHEL (ZWI) gene by T-DNA tagging, and report here that it encodes a member of the kinesin superfamily of microtubule motor proteins. Kinesin proteins transport diverse cellular materials in a directional manner along microtubules. Kinesin-like proteins are characterized by a highly conserved "head" region that comprises the motor domain, and a nonconserved "tail" region that is thought to participate in recognition and binding of the appropriate cargo.