PubAg

Main content area

EBV-encoded EBNA-6 binds and targets MRS18-2 to the nucleus, resulting in the disruption of pRb-E2F1 complexes

Author:
Kashuba, Elena, Yurchenko, Mariya, Yenamandra, Surya Pavan, Snopok, Boris, Isaguliants, Maria, Szekely, Laszlo, Klein, George
Source:
Proceedings of the National Academy of Sciences of the United States of America 2008 v.105 no.14 pp. 5489-5494
ISSN:
0027-8424
Subject:
B-lymphocytes, DNA, Human herpesvirus 4, antigens, humans, interphase, lymphocyte proliferation, viruses
Abstract:
Epstein-Barr virus (EBV), like other DNA tumor viruses, induces an S-phase in the natural host cell, the human B lymphocyte. This is linked with blast transformation. It is believed that the EBV-encoded nuclear antigen 6 (EBNA-6) is involved in the regulation of cell cycle entry. However, the possible mechanism of this regulation is not approached. In our current study, we found that EBNA-6 binds to a MRPS18-2 protein, and targets it to the nucleus. We found that MRPS18-2 binds to both hypo- and hyperphosphorylated forms of Rb protein specifically. This binding targets the small pocket of pRb, which is a site of interaction with E2F1. The MRPS18-2 competes with the binding of E2F1 to pRb, thereby raising the level of free E2F1. Our experimental data suggest that EBNA-6 may play a major role in the entry of EBV infected B cells into the S phase by binding to and raising the level of nuclear MRPS18-2, protein. This would inhibit pRb binding to E2F1 competitively and lift the block preventing S-phase entry.
Agid:
2361114