Main content area

Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans

Yun, Chi, Stanhill, Ariel, Yang, Yun, Zhang, Yuhong, Haynes, Cole M., Xu, Chong-Feng, Neubert, Thomas A., Mor, Adam, Philips, Mark R., Ron, David
Proceedings of the National Academy of Sciences of the United States of America 2008 v.105 no.19 pp. 7094-7099
Caenorhabditis elegans, active sites, arsenites, gene expression, genes, genetic rescue, hypersensitivity, longevity, mammals, proteasome endopeptidase complex, protein folding, proteins, stress tolerance
The burden of protein misfolding is believed to contribute to aging. However, the links between adaptations to conditions associated with protein misfolding and resistance to the time-dependent attrition of cellular function remain poorly understood. We report that worms lacking aip-1, a homologue of mammalian AIRAP (arsenic-inducible proteasomal 19S regulatory particle-associated protein), are not only impaired in their ability to resist exposure to arsenite but also exhibit shortened lifespan and hypersensitivity to misfolding-prone proteins under normal laboratory conditions. Mammals have a second, constitutively expressed AIRAP-like gene (AIRAPL) that also encodes a proteasome-interacting protein, which shares with AIRAP the property of enhancing peptide accessibility to the proteasome's active site. Genetic rescue experiments suggest that features common to the constitutively expressed worm AIP-1 and mammalian AIRAPL (but missing in the smaller, arsenite-inducible AIRAP) are important to lifespan extension. In worms, a single AIRAP-related protein links proteasomal adaptation to environmental stress with resistance to both proteotoxic insults and maintenance of animal life span under normal conditions.