Main content area

Identification of Haynaldia villosa chromosomes added to wheat using a sequential C-banding and genomic in situ hybridization technique

Zhong, S.B., Zhang, D.Y., Li, H.B., Yao, J.X.
Theoretical and applied genetics 1996 v.92 no.1 pp. 116-120
Dasypyrum villosum, Triticum aestivum, intergeneric hybridization, chromosome addition, chromosome banding, cytogenetic analysis, DNA probes, karyotyping, nucleic acid hybridization, genomics
Genomic in situ hybridization (GISH) offers a convenient and effective method for cytological detection, but can not determine the identity of the chromosomes involved. We integrated C-banding with GISH to identify Haynaldia villosa chromosomes in a wheat background. All chromosomes of H. villosa showed C-bands, either in telomeric regions or in both telomeric and centromeric regions, which allowed unequivocal identification of each H. villosa chromosome. The seven pairs of H. villosa chromosomes were differentiated as 1-7 according to their characteristic C-bands. Using a sequential C-banding and GISH technique, we have analyzed somatic cells of F3 plants from the amphiploid Triticum aestivum-H. villosa X 'Yangmai 158' hybrids. Three plants (94009/5-4,94009/5-8 and 94009/5-9) were shown to contain H. villosa chromosome(s). 94009/5-4 (2n = 45) had three H. villosa chromosomes (2, 3 and 4); 94009/5-8 (2n = 45) possessed one chromosome 4 and a pair of chromosome 5, and 94009/5-9 (2n =43) was found to have one chromosome 6 of H. villosa. The combination of GISH with C-banding described here provides a direct comparison of the cytological and molecular landmarks. Such a technique is particularly useful for identifying and localizing alien chromatin and DNA sequences in plants.