Main content area

First Report of Petunia Blight Caused by Choanephora cucurbitarum in the United States

Holcomb, G.E.
Plant disease 2003 v.87 no.6 pp. 751
Choanephora cucurbitarum, Petunia hybrida, agar, azoxystrobin, blight, dew, disease outbreaks, flowers, fungi, greenhouses, humidity, inoculum, iprodione, leaves, mancozeb, mycelium, new geographic records, pathogenicity, pathogens, plant pathology, spores, sporulation, stems, temperature, testing, thiophanate-methyl, Japan, Louisiana
A blight (wet rot) of petunia (Petunia ×hybrida Hort. Vilm.-Andr.) was observed in a wholesale propagation nursery in Baton Rouge, LA in September 2002. The grower reported that plants wilted and then completely rotted. The disease occurred during a period of hot, humid, and cloudy weather. Approximately 100 flats of flowering-age plants of cvs. Rose and White Madness were destroyed. No fungal sporulation was noticed on dead plants, but occasional strands of white mycelium were observed. The grower's use of azoxystrobin, iprodione, and thiophanate methyl plus mancozeb fungicides during current and past outbreaks of this disease did not prevent disease spread, but disease activity stopped after temperature and humidity dropped in early October. A fungus that produced white aerial mycelia that later developed light yellow areas and also black aerial spore masses was consistently isolated from diseased tissue placed on acidified potato dextrose agar (APDA). The fungus was identified as Choanephora cucurbitarum (Berk. & Ravenel) Thaxt. on the basis of cultural and morphological characteristics (3). Sporangiola were ellipsoid, pale brown to reddish brown with distinct longitudinal striations and measured 15 to 20 × 9 to 14 μm. Sporangiospores were broadly ellipsoid, pale brown to reddish brown, indistinctly striate with fine, hyaline polar appendages, and measured 16 to 34 × 7 to 12 μm. Spore measurements were within the range previously given for C.cucurbitarum (3). Pathogenicity tests were performed by misting a mixture of sporangiola and sporangiospores (25,000 to 70,000 per ml of water taken from 7- to 10-day-old cultures grown on APDA) on flowering-age petunia plants (cvs. Rose Madness, White Madness, and Dreams Pink). Tests were repeated twice. Inoculated plants and uninoculated control plants (2 to 4 of each treatment in each test) were held in a dew chamber at 28°C for 48 h and then moved to a greenhouse. Within 48 h after inoculation, plants developed water-soaked lesions on flowers, leaves, and stems, then wilted and rotted. Uninoculated plants remained disease free except for several that developed disease symptoms in the first test, apparently from the presence of natural inoculum on healthy-appearing plants that were obtained from the nursery where the disease was found. Koch's postulates were completed by reisolation of the pathogen from diseased inoculated plants. C. cucurbitarum (1) and C. infundibulifera (Curr.) Sacc. (2) have been reported to cause flower blight of petunia in the United States and whole plant blight (wet rot) of petunia in Japan (4). To our knowledge, this is the first report of C. cucurbitarum causing whole plant blight of petunia in the United States.