PubAg

Main content area

Cytolysin-Dependent Escape of the Bacterium from the Phagosome Is Required but Not Sufficient for Induction of the Th1 Immune Response against Listeria monocytogenes Infection: Distinct Role of Listeriolysin O Determined by Cytolysin Gene Replacement

Author:
Hara, Hideki, Kawamura, Ikuo, Nomura, Takamasa, Tominaga, Takanari, Tsuchiya, Kohsuke, Mitsuyama, Masao
Source:
Infection and immunity 2007 v.75 no.8 pp. 3791-3801
ISSN:
0019-9567
Subject:
CD4-positive T-lymphocytes, Listeria ivanovii, Listeria monocytogenes, bacteria, cytotoxins, genes, immune response, interferon-gamma, macrophages, mice, mutants, virulence
Abstract:
Listeria monocytogenes evades the antimicrobial mechanisms of macrophages by escaping from the phagosome into the cytosolic space via a unique cytolysin that targets the phagosomal membrane, listeriolysin O (LLO), encoded by hly. Gamma interferon (IFN-γ), which is known to play a pivotal role in the induction of Th1-dependent protective immunity in mice, appears to be produced, depending on the bacterial virulence factor. To determine whether the LLO molecule (the major virulence factor of L. monocytogenes) is indispensable or the escape of bacteria from the phagosome is sufficient to induce IFN-γ production, we first constructed an hly-deleted mutant of L. monocytogenes and then established isogenic L. monocytogenes mutants expressing LLO or ivanolysin O (ILO), encoded by ilo from Listeria ivanovii. LLO-expressing L. monocytogenes was highly capable of inducing IFN-γ production and Listeria-specific protective immunity, while the hly-deleted mutant was not. In contrast, the level of IFN-γ induced by ILO-expressing L. monocytogenes was significantly lower both in vitro and in vivo, despite the ability of this strain to escape the phagosome and the intracellular multiplication at a level equivalent to that of LLO-expressing L. monocytogenes. Only a negligible level of protective immunity was induced in mice against challenge with LLO- and ILO-expressing L. monocytogenes. These results clearly show that escape of the bacterium from the phagosome is a prerequisite but is not sufficient for the IFN-γ-dependent Th1 response against L. monocytogenes, and some distinct molecular nature of LLO is indispensable for the final induction of IFN-γ that is essentially required to generate a Th1-dependent immune response.
Agid:
272352