Main content area

Significant improvements in the analysis of perfluorinated compounds in water and fish: Results from an interlaboratory method evaluation study

van Leeuwen, S.P.J., Swart, C.P., van der Veen, I., de Boer, J.
Journal of chromatography 2009 v.1216 no.3 pp. 401-409
chromatography, fish, perfluorocarbons, variance
The 2nd international interlaboratory study (ILS) on perfluorinated compounds (PFCs) in environmental samples was organized to assess the performance of 21 North American and European laboratories on the analysis of PFCs in water and fish. A study protocol was provided to assess accuracy, precision, matrix effects and to study the use of in-house standards. The participants used shared native and mass-labelled standards that were provided for this study to quantify the PFC concentrations in the samples. Matrix effects in the determination of PFCs can be considerable and can decrease the sensitivity, the accuracy and internal standard recoveries. Therefore, two quantification methods were evaluated by all laboratories: standard addition quantification (SAQ) and solvent-based calibration curve quantification (SBCCQ; using mass-labelled internal standards (IS)). The between laboratory reproducibility (i.e. coefficient of variance) was smaller for the SBCCQ results (except for PFBS and PFHxS for which no mass-labelled analogues were available) compared to those obtained by the SAQ method. The within laboratory precision of individual laboratories is good (mean for all PFCs in water 12% and 6.8% in fish). The good performance is partially attributable to the use of well-defined native- and mass-labelled standards. Therefore, the SBCCQ method is recommended. The results show that analytical methods for PFCs in water and fish have improved considerably. Critical steps identified in this study are (i) the use of well-defined native standards for quantification, (ii) the use of mass-labelled internal standards (preferably one for each target compound) and (iii) minimization of matrix effects by a better clean up.