PubAg

Main content area

Myoplasmic calcium regulation in myotubes from horses with recurrent exertional rhabdomyolysis

Author:
Lentz, Linnea R., Valberg, Stephanie J., Herold, Lee V., Onan, Gary W., Mickelson, James R., Gallant, Esther M.
Source:
American journal of veterinary research 2002 v.63 no.12 pp. 1724-1731
ISSN:
0002-9645
Subject:
Thoroughbred, biopsy, caffeine, calcium, cell culture, contracture, crossbreds, fluorescence, horses, image analysis, muscle fibers, muscles, myocytes, rhabdomyolysis
Abstract:
Objective-To determine whether alterations in myoplasmic calcium regulation can be identified in muscle cell cultures (myotubes) and intact muscle fiber bundles derived from Thoroughbreds affected with recurrent exertional rhabdomyolysis (RER). Animals-6 related Thoroughbreds with RER and 8 clinically normal (control) Thoroughbred or crossbred horses. Procedures-Myotube cell cultures were grown from satellite cells obtained from muscle biopsy specimens of RER-affected and control horses. Fura-2 fluorescence was used to measure resting myoplasmic calcium concentration as well as caffeine- and 4-chloro-m-cresol (4-CMC)-induced increases in myoplasmic calcium. In addition, intact intercostal muscle fiber bundles were prepared from both types of horses, and their sensitivities to caffeine- and 4-CMC-induced contractures were determined. Results-Myotubes of RER-affected and control horses had identical resting myoplasmic calcium concentrations. Myotubes from RER-affected horses had significantly higher myoplasmic calcium concentrations than myotubes from control horses following the addition of ≥ 2mM caffeine; however, there was no difference in their response to 4-CMC (greater than 1mM). Caffeine contracture thresholds for RER and control intact muscle cell bundles (2 vs 10mM, respectively) were significantly different, but 4-CMC contracture thresholds of muscle bundles from RER-affected and control horses (500µM) did not differ. Conclusions and Clinical Relevance-An increase in caffeine sensitivity of muscle cells derived from a family of related RER-affected horses was detected in vitro by use of cell culture with calcium imaging and by use of fiber bundle contractility techniques. An alteration in muscle cell calcium regulation is a primary factor in the cause of this heritable myopathy.
Agid:
308572