Main content area

The response of river discharge to climate fluctuations in the source region of the Yellow River

Zhang, Jianfeng, Li, Guomin, Liang, S.
Environmental earth sciences 2012 v.66 no.5 pp. 1505-1512
air temperature, climate, data collection, rivers, water supply, Yellow River
The Yellow River is the second biggest river in China and serves as a source of domestic and agricultural water supply in the watershed. In the last several decades, this river’s discharge reduced to zero several times since 1960, especially in the 1990s. The decreasing river flow has caused some serious eco-environmental problems in the source region. To study the important effects of climate on river discharge in the source area, a data set of 44 water-year river flow, air temperature and precipitation is selected and wavelet analysis is performed to describe and identify the features of climate (air temperature and precipitation) and river discharge. Results of continuous wavelet transform (CWT) show that all three parameters have common significant periods of 1–2 and 3–6 years against red noise in different time spans while river discharge probably has a 16-year-period mainly in the cone of influence (COI). Comparison of river flow and its CWT suggests these zero river flows are connected to extreme low values located in different scales, indicating that climate does control the river discharge in the source area. The cross wavelet (XWT) and wavelet coherence (WTC) clearly illustrate that the first zero river discharge (about in 1961) is only related to precipitation, while the rest have resulted from the combination of air temperature and precipitation.