Main content area

Desert riparian forest colonization in the lower reaches of Tarim River based on remote sensing analysis

Liu, Guilin, Kurban, Alishir, Duan, Huanming, Halik, Umut, Ablekim, Abdimijit, Zhang, Luocheng
Environmental earth sciences 2014 v.71 no.10 pp. 4579-4589
forests, process monitoring, remote sensing, rivers, vegetation cover
The ecological water conveyance project that pipes water from Daxihaizi reservoir to lower reaches of Tarim River has been implemented ten times since 2000. After ecological water conveyance, restoration has taken place for vegetation along the dried-up lower reaches of the Tarim River. The changes of vegetation fluctuated yearly due to ecological water conveyance. In order to reveal the detailed process of vegetation changes, remote sensing images from 1999 to 2010 were all classified individually into vegetated and non-vegetated areas using the soil-adjusted vegetation index threshold method. Then inter-annual changes of vegetation over a period of 12 years were obtained using a post-classification change detection technique. Finally, spatial–temporal changes distribution of vegetation cover and its response to ecological water conveyance were analyzed. The results indicate: (1) vegetation area increased by 8.52 % overall after ecological water conveyance. Vegetation between 2003 and 2004 increased dramatically with 45.87 % while vegetation between 2002 and 2003 decreased dramatically with 17.83 %. (2) Vegetation area gain is greater than vegetation loss during 1999–2000, 2001–2002, 2003–2004 and 2009–2010 periods. Although vegetation restoration is obvious from 1999 to 2010, vegetation loss also existed except for the periods above. It indicates that vegetation restoration fluctuated due to ecological water conveyance. (3) Spatial distribution of vegetation restoration presented “strip” distribution along the river and group shaper in the lower terrain area, while spatial distribution of vegetation loss mainly located in the upper reaches of river and area far away from the river. (4) Vegetation restoration area had a positive relative with total ecological water conveyance volume. The scheme and season of ecological water conveyance had also influenced the vegetation restoration. The vegetation change process monitoring, based on continuous remote sensing data, can provide the spatial–temporal distribution of vegetation cover in a large-scale area and scientific evidences for implementing ecological water conveyance in the lower Tarim River.