Main content area

The impacts of prescribed moorland burning on water colour and dissolved organic carbon: A critical synthesis

Holden, J., Chapman, P.J., Palmer, S.M., Kay, P., Grayson, R.
Journal of environmental management 2012 v.101 pp. 92-103
business enterprises, carbon, color, discoloration, dissolved organic carbon, heathlands, highlands, lakes, peat, prescribed burning, rivers, soil depth, soil sampling, soil water, streams, surface water, vegetation cover, water supply, watersheds
Discolouration of natural surface waters due to the humic component of dissolved organic carbon (DOC) is a costly problem for water supply companies. This paper reviews what is known about the impacts of prescribed moorland vegetation burning on water colour. Relevant research has taken place at three scales: laboratory experiments on peat cores, plot scale sampling of soil waters and catchment scale sampling of stream waters. While laboratory studies suggest burning increases colour production, the evidence from catchment and plot studies is contradictory. Plot studies suggest colour production may decrease or remain unchanged following burning although there is evidence for some transient changes. Catchment studies suggest prescribed moorland burning causes stream water colour to increase, although in most cases the evidence is not clear cut since most studies could not clearly disentangle the effects of burning from those of vegetation cover. The differences in findings between plot and catchment studies may be explained by: i) the short-term nature of some studies which do not measure long-term response and recovery times to burning; ii) the lack of colour measurements from shallow soil depths which contribute more to streamflow than soil water from deeper in the peat; and iii) the possibility of hydrological interactions occurring between different experimental plots at some sites. Additionally, the increase in recent patch burning in some catchments that has been statistically attributed by some authors to increases in stream water colour cannot be reconciled with theoretical calculations. When dilution with waters derived from other parts of the catchment are taken into account, large values of colour have to be theoretically derived from those recently burnt areas that occupy a small proportion of the catchment area in order to balance the change in stream water colour observed in recent years. Therefore, much further process-based work is required to properly investigate whether prescribed vegetation burning is a direct driver of enhanced colour and DOC in upland streams, rivers and lakes.