PubAg

Main content area

Composition of fatty acids in virgin olive oils from cross breeding segregating populations by gas chromatography separation with flame ionization detection

Author:
Sánchez de Medina, Verónica, El Riachy, Milad, Priego‐Capote, Feliciano, Luque de Castro, María Dolores
Source:
Journal of the science of food and agriculture 2015 v.95 no.14 pp. 2892-2900
ISSN:
0022-5142
Subject:
analysis of variance, cluster analysis, crossing, cultivars, enzymes, essential fatty acids, esterification, fatty acid composition, flame ionization, free fatty acids, genotype, oleic acid, olives, palmitic acid, principal component analysis, virgin olive oil
Abstract:
BACKGROUND: Recent technological advances to improve the quality of virgin olive oil (VOO) have been focused on olive breeding programs by selecting outstanding cultivars and target progenies. Fatty acid (FA) composition, with special emphasis on oleic acid (C18:1) and palmitic acid (C16:0), is one of the most critical quality factors to be evaluated in VOO. For this reason, the profile of FAs is frequently used as a decision tool in olive breeding programs. RESULTS: A method based on gas chromatography with flame ionization detection (GC‐FID) was used to study the influence of genotype on the concentration of ten of the most important FAs in VOOs from target crosses Arbequina × Arbosana, Picual × Koroneiki and Sikitita × Arbosana and their corresponding genitors Arbequina, Arbosana, Koroneiki, Picual and Sikitita. For this purpose, a targeted approach was selected for determination of esterified FAs (EFAs) and non‐esterified FAs (NEFAs) in a dual analysis by the same chromatographic method. A Pearson analysis revealed correlations between pairs of FAs, which allowed detecting metabolic connections through desaturation and elongation enzymes. An ANOVA test (with P < 0.01) led to identification of C16:0 EFA, C16:1 EFA and C18:1 EFA and also C16:1 NEFA and C18:0 NEFA as the FAs more influenced by cross breeding. Statistical analysis was carried out by unsupervised analysis using principal component analysis (PCA) and cluster analysis (CA) to look for variability sources. CONCLUSION: Crosses with a common genitor (Arbequina × Arbosana and Sikitita × Arbosana) were partially overlapped in the PCAs using the profile of FAs. The CA results revealed clear differences between Sikitita × Arbosana and Picual × Koroneiki crosses in the composition of the most significant FAs, while Arbequina × Arbosana was not properly discriminated from the other crosses. © 2014 Society of Chemical Industry
Agid:
4192680