Main content area

Using ants to manage sustainable grazing: Dynamics of ant faunas along sheep grazing gradients conform to four global patterns

Austral ecology 2011 v.36 no.6 pp. 698-708
vegetation structure, vegetation types, arid zones, community structure, rangelands, pastures, sheep, multivariate analysis, species diversity, grazing intensity, Formicidae, grazing lands, fauna, environmental monitoring
Ants are considered an important faunal group for the functioning of arid rangelands, they have a long history of use for environmental monitoring, and exhibit four global patterns in grazing lands: (i) soil and vegetation type are primary determinants of ant community composition, and have a far greater effect on ant community composition than grazing; (ii) grazing induces species compositional change, but does not necessarily affect species richness or abundance; (iii) a species response to grazing is not necessarily consistent across habitats; and (iv) approximately one‐quarter to one‐half of species that are common enough for statistical analysis have significant responses to grazing. Here we report the patterns of arid zone ant faunas as they exist after several decades of sheep grazing in southern Australia, and examine the extent to which they conform to the four global patterns. We measured ant faunas along grazing gradients (varying distance to water) in seven paddocks containing two soil and two vegetation types on five pastoral properties. Total site abundance and richness of ants did not differ significantly with distance from water, but the abundance of 10 (34%) of the 29 most common species did differ; three were increasers, three were decreasers, and four had mixed responses dependent on soil/vegetation type. Rare species showed no trend with grazing intensity. The ant fauna of the more structurally complex vegetation types appeared to be the most vulnerable to grazing effects. Multivariate analysis showed soil type was the primary factor influencing ant faunal composition, followed by vegetation structure; however, grazing treatment effects were present. This study fully supports the recently identified global patterns of ant responses to grazing. It also shows that sampling regional ant faunas using widely dispersed traps can detect ant faunal patterns comparable to studies that use smaller‐scale grids of traps.