PubAg

Main content area

Determination of the thiol redox state of organisms: new oxidative stress indicators

Author:
Patsoukis, Nikolaos, Georgiou, Christos D.
Source:
Analytical and bioanalytical chemistry 2004 v.378 no.7 pp. 1783-1792
ISSN:
1618-2642
Subject:
acetylcysteine, animals, cysteine, fungi, glutathione, methodology, oxidative stress, perchloric acid, proteins, thiols
Abstract:
This study describes a new methodology by which the concentrations of non-protein (NP) thiols glutathione (GSH), cysteine (CSH), N-acetylcysteine (AcCSH), and protein (P) thiols (PSH), as well as the contribution of these components to symmetric and mixed disulfides (NPSSR, NPSSC, NPSSCAc, PSSR, PSSC, PSSCAc, PSSP) can reliably be measured. The methodology consists of a strict sequence of methods which are applied to every sample. Free thiols at any given state of the procedure are measured by Ellman’s assay, the CSH fraction is measured by its unique response in the ninhydrin assay, AcCSH is selectively measured with ninhydrin after enzymatic deacylation, proteins are separated from non-protein thiols/disulfides by precipitation with trichloroacetic or perchloric acid, disulfides are reduced into free thiols with borohydride, mixed disulfides between a protein and a non-protein component are measured by extracting the non-protein thiol from the protein pellet after borohydride treatment, and protein thiols/disulfides are measured after resolubilization of the protein pellet.When this method was applied to animal and fungal tissue, new molecular indicators of the thiol redox state of living cells were identified. The findings of the present study clearly show that the new parameters are very sensitive indicators of redox state, while at the same time the traditional parameters GSH and GSSG often remain constant even upon dramatic changes in the overall redox state of biological tissue. Therefore, unbiased assessment of the redox state also requires explicit measurement of its most sensitive thiol indicators.
Agid:
4380773