Main content area

Salmonella and Escherichia coli O157:H7 Contamination on Hides and Carcasses of Cull Cattle Presented for Slaughter in the United States: an Evaluation of Prevalence and Bacterial Loads by Immunomagnetic Separation and Direct Plating Methods

Brichta-Harhay, Dayna M., Guerini, Michael N., Arthur, Terrance M., Bosilevac, Joseph M., Kalchayanand, Norasak, Shackelford, Steven D., Wheeler, Tommy L., Koohmaraie, Mohammad
Applied and environmental microbiology 2008 v.74 no.20 pp. 6289
food sanitation, meat, beef cattle, culling (animals), beef carcasses, hides and skins, bacterial contamination, food contamination, Escherichia coli O157:H7, Salmonella, slaughter, plate count, immunomagnetic separation, meat processing, United States
The hide and carcass hygiene of cull cattle at slaughter in four geographically distant regions of the United States was examined from July 2005 to April 2006 by measuring the aerobic plate counts (APC) and the prevalences and loads of Salmonella and Escherichia coli O157:H7. The geometric mean log₁₀ APC CFU/100 cm² levels on hides and preevisceration and postintervention carcasses ranged from 6.17 to 8.19, 4.24 to 6.47, and 1.46 to 1.96, respectively, and were highest in the summer (P < 0.0001). The average prevalences of Salmonella on hides and preevisceration and postintervention carcasses were 89.6% (95% confidence interval [CI], 85.1 to 94.0), 50.2% (95% CI, 40.9 to 59.5), and 0.8% (95% CI, 0.18 to 1.42), respectively. The prevalences of E. coli O157:H7 were 46.9% (95% CI, 37.3 to 56.6) and 16.7% (95% CI, 9.8 to 23.6) on hides and preevisceration carcasses, respectively. Examination of the concomitant incidence of Salmonella and E. coli O157:H7 showed that, on average, 33.3% (95% CI, 15.9 to 69.8) of cattle hide and 4.1% (95% CI, 0.98 to 17.3) of preevisceration carcass samples were contaminated with both pathogens. The pathogen prevalence on hides and carcasses was not significantly affected by the season; however, significant differences were observed between plants with respect to the incoming pathogen load and the ability to mitigate hide-to-carcass transfer. In spite of these differences, postintervention carcass contamination was significantly reduced (P < 0.001), likely as a result of the use of one or more of the processing interventions employed at each of the four processing plants examined.