Main content area

A proposed analysis of saturation-dependent anisotropy for US Department of Energy (DOE) Hanford site soils

Hunt, AllenG., Skinner, ThomasE.
Hydrogeology journal 2010 v.18 no.2 pp. 381-403
hydraulic conductivity, prediction, sediments, support systems, technetium, texture, United States
Technetium (⁹⁹Tc) spreads predominantly laterally through US Department of Energy Hanford site sediments. Lateral transport implies that at higher tensions, h, in the unsaturated zone, the effective hydraulic conductivity, K, may be strongly anisotropic. A modeling procedure has been developed to predict characteristics of the Tc plumes. The procedure consists of: (1) Adapting existing numerical techniques based on critical path analysis to calculate K(h), (2) Statistically correlating predicted K at various h values with texture, (3) Seeking value of h, for which anisotropy and horizontal K values are both sufficiently large to accommodate multi-kilometer horizontal spreading, (4) Predicting the distribution of K values for vertical flow as a function of system support volume, (5) Comparing the largest likely K value in the vertical direction with the expected K in the horizontal direction, (6) Finding the length scale at which the two K values are roughly equal, and (7) Comparing that length scale with horizontal spreading of the plume. Predictions of the typical value of h at which spreading is occurring compares well with inference. However, the length scale at which Tc transport in the unsaturated zone changes from predominantly horizontal to more nearly vertical appears underestimated.