Main content area

Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC–MS

Bryant, R.J., McClung, A.M.
Food chemistry 2011 v.124 no.2 pp. 501
Oryza sativa, aromatic compounds, cultivars, flavor, gas chromatography, microextraction, odors, olfactometry, rice, spectrometers, staple foods, texture, volatile compounds, Mali
Rice (Oryza sativa L.) is enjoyed by many people as a staple food because of its flavour and texture. Some cultivars, like scented rice, are preferred over others due to their distinctive aroma and flavour. The volatile profile of rice has been explored by other investigators, some of whom have also determined a corresponding aroma using GC/olfactometry. However, little research has been done to determine if different aromatic rice cultivars produce different flavour volatiles that would make them more desirable than others when cooked. In this study, seven aromatic and two non-aromatic cultivars were examined for their volatile profiles both before and after storage using solid phase microextraction (SPME) fibres in conjunction with gas chromatography/mass spectrometer (GC–MS). Ninety-three volatile compounds were identified, 64 of which had not been previously reported in rice. Differences were found in the volatile compounds of aromatic and non-aromatic rice besides 2-acetyl-1-pyrroline (2-AP). Most of the volatile compounds were present in freshly harvested rice and rice following storage, with very few new compounds being identified only after storage. Dellrose, an aromatic cultivar, and Cocodrie, a non-aromatic cultivar, had the most complex volatile profiles (over 64 volatiles). Sixteen compounds were found only in the aromatic cultivars, and some volatiles were found to be unique to specific aromatic cultivars. However, no distinctive pattern was observed that would identify a cultivar as being derived from Basmati, Khao Dawk Mali 105 (i.e. jasmine), or other sources of aroma. This study showed that there is a great diversity of volatiles in both aromatic and non-aromatic rice cultivars and, with further research, this may lead to a better understanding of the combination of compounds that gives a cultivar a unique flavour.