PubAg

Main content area

Transcriptomic Response of Listeria monocytogenes to Iron Limitation and fur Mutation

Author:
Ledala, Nagender, Sengupta, Mrittika, Muthaiyan, Arunachalam, Wilkinson, Brian J., Jayaswal, R.K.
Source:
Applied and environmental microbiology 2010 v.76 no.2 pp. 406-416
ISSN:
0099-2240
Subject:
Listeria monocytogenes, bacteria, genes, iron, microarray technology, mutants, mutation, proteins, toxicity
Abstract:
Iron is required by almost all bacteria, but concentrations above physiological levels are toxic. In bacteria, intracellular iron is regulated mostly by the ferric uptake regulator, Fur, or a similar functional protein. Iron limitation results in the regulation of a number of genes, especially those involved in iron uptake. A subset of these genes is the Fur regulon under the control of Fur. In the present study, we have identified Fur- and iron-regulated genes in Listeria monocytogenes by DNA microarray analysis using a fur mutant and its isogenic parent. To identify genes regulated exclusively in response to iron limitation, the whole-genome transcriptional responses to the iron limitation of a fur mutant and its isogenic parent were compared. Fur-regulated genes were identified by comparing the transcriptional profile of the parent with the transcriptional profile of the isogenic fur mutant. Our studies have identified genes regulated exclusively in response to iron and those that are negatively regulated by Fur. We have identified at least 14 genes that were negatively regulated directly by Fur. Under iron-limited conditions, these genes were upregulated, while the expression of fur was found to be downregulated. To further investigate the regulation of fur in response to iron, an ectopic fur promoter-lacZ transcriptional fusion strain was constructed, and its isogenic fur and perR mutant derivatives were generated in L. monocytogenes 10403S. Analysis of the iron limitation of the perR mutant indicated that the regulation of genes under the negative control of Fur was significantly inhibited. Our results indicate that Fur and PerR proteins negatively regulate fur and that under iron-limited conditions, PerR is required for the negative regulation of genes controlled by Fur.
Agid:
457873