Main content area

Comparison of orthologous cytochrome P450 genes relative expression patterns in the bark beetles Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae) during host colonization

Obregón‐Molina, G., Cesar‐Ayala, A. K., López, M. F., Cano‐Ramírez, C., Zúñiga, G.
Insect molecular biology 2015 v.24 no.6 pp. 649-661
Curculionidae, Dendroctonus valens, bark, bark beetles, coniferous forests, cytochrome P-450, digestive system, eggs, enzymes, exposure duration, females, gene expression, genes, males, monoterpenoids, oviposition, quantitative polymerase chain reaction, trees
Bark beetles of the genus Dendroctonus are important components of coniferous forests. During host colonization, they must overcome the chemical defences of their host trees, which are metabolized by cytochrome P450 (CYP or P450) enzymes to compounds that are readily excreted. In this study, we report the relative expression (quantitative real‐time PCR) of four orthologous cytochrome P450 genes (CYP6BW5, CYP6DG1, CYP6DJ2 and CYP9Z20) in Dendroctonus rhizophagus and Dendroctonus valens forced to attack host trees at 8 and 24 h following forced attack and in four stages during natural colonization [solitary females boring the bark (T1); both male and female members of couples before oviposition (T2); both male and female members of couples during oviposition (T3), and solitary females inside the gallery containing eggs (T4)]. For both species gene expression was different compared with that observed in insects exposed to single monoterpenes in the laboratory, and the expression patterns were significantly different amongst species, sex, gut region and exposure time or natural colonization stage. The induction of genes (CYP6BW5v1, CYP6DJ2v1 and CYP9Z20v1 from D. rhizophagus, as well as CYP6DG1v3 from D. valens) correlated with colonization stage as well as with the increase in oxygenated monoterpenes in the gut of both species throughout the colonization of the host. Our results point to different functions of these orthologous genes in both species.