PubAg

Main content area

Accelerated pathway evolution in mouse-like rodents involves cell cycle control

Author:
Vinogradov, Alexander E.
Source:
Mammalian genome 2015 v.26 no.11-12 pp. 609-618
ISSN:
0938-8990
Subject:
Heterocephalus glaber, animal models, apoptosis, biomedical research, cell cycle, evolution, genes, guinea pigs, hamsters, humans, immunity, messenger RNA, mice, mole rats, protein degradation, rats, signal transduction, stem cells
Abstract:
Rodents include both the cancer-susceptible short-lived mouse and the two unrelated cancer-resistant long-lived mole-rats. In this work, their genomes were analyzed with the goal to reveal pathways enriched in genes, which are more similar between the mole-rats than between the mouse and the naked mole-rat. The pathways related to cell cycle control were prominent. They include external signal transduction and all cell cycle stages. There are several stem cell pathways among them. The other enriched pathways involve ubiquitin-dependent protein degradation, immunity, mRNA splicing, and apoptosis. The ubiquitin-dependent protein degradation is a core of network of enriched pathways. However, this phenomenon is not specific for the mouse and the mole-rats. The other muroid species show features similar to the mouse, whereas the non-muroid rodents and the human show features similar to the mole-rats. The higher ratio of non-synonymous to synonymous nucleotide substitutions (dN/dS) indicates the accelerated evolution of revealed pathways in the muroid rodents (except the blind mole-rat). Paradoxically, the dN/dS averaged over the whole genome is lower in the muroids, i.e., the purifying selection is generally stronger in them. In practical sense, these data suggest caveat for using muroid rodents (mouse, rat, and hamsters) as biomedical models of human conditions involving cell cycle and show the network of pathways where muroid genes are most different (compared with non-muroid) from human genes. The guinea pig is emphasized as a more suitable rodent model for biomedical research involving cell cycle.
Agid:
4663097