Main content area

Deletion of putative oxidoreductases from Klebsiella pneumoniae J2B could reduce 1,3-propanediol during the production of 3-hydroxypropionic acid from glycerol

Ko, Yeounjoo, Ashok, Somasundar, Seol, Eunhee, Ainala, Satish Kumar, Park, Sunghoon
Biotechnology and bioprocess engineering 2015 v.20 no.5 pp. 834-843
Klebsiella pneumoniae, aldehyde dehydrogenase, amino acids, genes, glycerol, mutants, sequence analysis
Recombinant Klebsiella pneumoniae over-expressing 3-hydroxypropionaldehyde (3-HPA) dehydrogenase can produce 3-hydroxypropionic acid (3-HP), an important platform chemical, from glycerol. However, K. pneumoniae co-produces 1,3-propanediol (1,3-PDO) due to the presence of 1,3-propanediol oxidoreductases, which decreases the titer and yield of 3-HP. Previously, two major oxidoreductases, dhaT and yqhD, were removed from K. pneumoniae; however the mutant still produced a significant amount of 1,3-PDO, indicating the probable existence of other oxidoreductase(s). Genome analysis of K. pneumoniae revealed the presence of five putative oxidoreductases having high amino acid similarities to both DhaT (primary 1,3-propanediol oxidoreductase) and YqhD (aldehyde dehydrogenase). Among them, adhE was highly expressed in the absence of DhaT and YqhD. Additionally, an alkyl hydroperoxide oxidoreductase (ahpF), albeit dissimilar to both DhaT and YqhD, was highly expressed in the absence of DhaT and YqhD. To examine the role of adhE and ahpF in 1,3-PDO production, mutant strains devoid of dhaT, yqhD, ahpF and/or adhE genes were developed. However, these mutants neither reduced the production of 1,3-PDO nor improved the production of 3-HP when engineered to over-express an aldehyde dehydrogenase (KGSADH). These results indicate that, apart from DhaT, YqhD, AhpF and AdhE, K. pneumoniae has other, unknown oxidoreductases that are involved in 1,3-PDO production. It is concluded that complete elimination of 1,3-PDO during 3-HP production from glycerol by K. pneumoniae is highly challenging.