Main content area

Morphology, phylogeny, dynamics, and ichthyotoxicity of Pheopolykrikos hartmannii (Dinophyceae) isolates and blooms from New York, USA

Tang, Ying Zhong, Harke, Matthew J., Gobler, Christopher J., Cock, M.
Journal of phycology 2013 v.49 no.6 pp. 1084-1094
Cyprinodon, Dinophyceae, aeration, autumn, crossing, estuaries, juveniles, minnows, nucleotide sequences, phylogeny, ribosomal DNA, rivers, scanning electron microscopy, summer, Korean Peninsula, New York
We report on morphological observations, phylogenetic analyses, bloom dynamics, and ichthyotoxicity of the common but poorly characterized dinoflagellate Pheopolykrikos hartmannii (Zimmermann) Matsuoka et Fukuyo. From 2008 to 2010 in the Forge River Estuary, NY, USA, P. hartmannii bloomed during summer and early fall, achieving densities exceeding 8,000 cells · mL⁻¹ and often dominating microphytoplankton communities. Large subunit (LSU) and small subunit (SSU) rDNA sequences demonstrated that NY isolates of P. hartmannii sequences were 99%–100% identical to P. hartmannii isolates from eastern US and Korea. In both the LSU and SSU rDNA phylogenies, the clades containing P. hartmannii sequences were distinct sister clades to those composed of Polykrikos schwartzii and P. kofoidii. In the LSU rDNA phylogeny, however, the clade composed of P. hartmannii and a sequence of the photosynthetic Polykrikos lebourae was well separated from the clade composed of 10 entries of Polykrikos schwartzii and P. kofoidii. In addition, a gap of ~180 bases was observed when the LSU rDNA sequences of P. hartmannii were aligned with P. schwartzii and P. kofoidii but was not observed in the alignment between P. hartmannii and P. lebourae. Using scanning electron microscopy, several morphological features previously not reported for P. hartmannii were observed: a ventral groove located in the sulcus, a deep arc‐like apical concavity within the area of apical groove, scale‐like vesicles, and a shallow, completely enclosed, loop‐like apical groove. Resting cysts with arrow‐like surface spines were produced heterothallically by crossing clonal isolates and germinated single gymnoid cells. Finally, filtered and unfiltered bloom water from the Forge River and clonal cultures of P. hartmannii exhibited acute ichthyotoxicity to juvenile sheepshead minnows (Cyprinodon variegates) and aeration did not mitigate this effect, suggesting P. hartmannii is an ichthyotoxic, harmful alga.