Main content area

Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. II. Impaired maturation of Purkinje cells

Dvergsten, Christopher L., Fosmire, Gary J., Ollerich, Dwayne A., Sandstead, Harold H.
Developmental brain research 1984 v.16 no.1 pp. 11
zinc, malnutrition, cell growth, cell differentiation, dendrites, postnatal development, cerebellum, rats
Zinc deficiency during the first 3 postnatal weeks retarded the maturation of Purkinje cells. The dendrites of the Purkinje cells of 21-day-old zinc-deficient (ZD) rats were reduced in size and had fewer branches. Somatic processes were found in 24% of the Purkinje cells of ZD animals. Only 3% of the Purkinje cells of normal animals had somatic processes. A basal polysomal mass in the Purkinje cells of 21-day-old ZD rats indicated that zinc deficiency impaired the cytoplasmic maturation of Purkinje cells. The development of the glial envestment of the dendrites and the maturation of climbing fibers also were retarded. Pair-fed controls were studied to control for the effects of inanition in the ZD dams. In the pups of pair-fed dams, undernutrition slightly impaired the growth of the dendrites but produced few qualitative changes in the maturation of the soma and climbing fibers. Somatic processes were found on 10% of the Purkinje cells of pair-fed animals. Thus, the findings in the ZD animals were not only caused by the decreased maternal food consumption but by zinc deficiency. The retarded maturation of Purkinje cells was related to the altered metabolism of Purkinje cells and to effects secondary to decreased numbers of parallel fibers.