Main content area

Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment

Yamane, Hisayo, Ooka, Tomomi, Jotatsu, Hiroaki, Hosaka, Yukari, Sasaki, Ryuta, Tao, Ryutaro
Journal of experimental botany 2011 v.62 no.10 pp. 3481-3488
Arabidopsis, Prunus persica, ambient temperature, autumn, budbreak, buds, chilling requirement, cyanamides, dormancy, dormancy breaking, genes, leaves, loci, peaches, stems, winter
The present study investigated the expressional regulation of PpDAM5 and PpDAM6, two of the six peach (Prunus persica) dormancy-associated MADS-box genes, in relation to lateral bud endodormancy. PpDAM5 and PpDAM6 were originally identified as homologues of Arabidopsis SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 identified in the EVERGROWING locus of peach. Furthermore, PpDAM5 and PpDAM6 have recently been suggested to be involved in terminal bud dormancy. In this study, seasonal expression analyses using leaves, stems, and lateral buds of high-chill and low-chill peaches in field conditions indicated that both genes were up-regulated during the endodormancy period and down-regulated with endodormancy release. Controlled environment experiments showed that the expression of both PpDAM5 and PpDAM6 were up-regulated by ambient cool temperatures in autumn, while they were down-regulated by the prolonged period of cold temperatures in winter. A negative correlation between expression levels of PpDAM5 and PpDAM6 and bud burst percentage was found in the prolonged cold temperature treatment. Application of the dormancy-breaking reagent cyanamide to endo/ecodormant lateral buds induced early bud break and down-regulation of PpDAM5 and PpDAM6 expression at the same time. These results collectively suggest that PpDAM5 and PpDAM6 may function in the chilling requirement of peach lateral buds through growth-inhibiting functions for bud break.